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Abstract—Web browsers routinely handle private informa-
tion. Owing to a lax security model, browsers and JavaScript
in particular, are easy targets for leaking sensitive data. Prior
work has extensively studied information flow control (IFC)
as a mechanism for securing browsers. However, two central
aspects of web browsers — the Document Object Model (DOM)
and the event handling mechanism — have so far evaded thor-
ough scrutiny in the context of IFC. This paper advances the
state-of-the-art in this regard. Based on standard specifications
and the code of an actual browser engine, we build formal
models of both the DOM (up to Level 3) and the event handling
loop of a typical browser, enhance the models with fine-grained
taints and checks for IFC, prove our enhancements sound and
test our ideas through an instrumentation of WebKit, an in-
production browser engine. In doing so, we observe several
channels for information leak that arise due to subtleties of
the event loop and its interaction with the DOM.

I. INTRODUCTION

A lot of confidential information like passwords, authen-
tication cookies, credit card numbers, search queries and
browsing history passes through web browsers. Client-side
applications can easily read and leak or misuse this informa-
tion, due to either malicious intent or insecure programming
practices [1], [2], [3], [4]. Browser vendors are sensitive
to this problem, but conventional data protection solutions
implemented in web browsers have loopholes that can be,
and often are, exploited. For example, the standard same-
origin policy (SOP) [5], which is intended to restrict cross-
domain data flows, can be easily bypassed by malicious
programs through cross-domain image download requests
that are exempt from the policy by design. This has often
been exploited to leak cookies from webpages.

A significant source of security problems in web appli-
cations is the lax security model of the ubiquitous client-
side programming language JavaScript (JS). In all browsers,
third-party JS included in a page runs with the privileges of
the page. This enables data leaks when untrustworthy third-
party scripts are blindly included by website developers.
Content-security policies (CSPs) [6] that allow whitelisting
of trusted websites have been implemented to alleviate the
problem, but CSPs also disable inline JS and dynamic
code insertion (through the JS construct eval()), both of
which are widely used [7]. More fine-grained data protection
methods such as Google’s Caja [8], FBJS [9] or AdSafe [10]
use static analysis or source rewriting to limit access of third-

party code to confidential resources. Although sometimes
provably secure [11], these systems restrict third-party code
to subsets of HTML and JS to enable analysis.

More generally, all data protection mechanisms discussed
above implement some form of one-time access control
on data available to third-party code. As such, they are
completely ineffective when the third-party code legitimately
needs confidential data to provide functionality, but must
be prevented from disclosing it in unexpected ways. In-
formation flow control (IFC) within the web browser is an
obvious, holistic method to solve this problem. With IFC,
the browser can allow third-party code to access confidential
data, but monitor flows of information within the third-
party code (either finely or coarsely) and selectively disallow
unexpected flows, thus supporting both functionality and
security. Unsurprisingly, a number of solutions based on IFC
have been proposed for web browsers [12], [13], [14], [15],
[16], [17], [18], [19]. However, all these solutions have two
significant shortcomings — they either do not handle or
abstract over the event handling logic of the browser and
they do not handle the browser APIs completely. In this
paper, we design, formalize, prove sound and implement an
IFC solution that addresses these shortcomings.

Shortcoming 1: Event handling logic. Existing IFC so-
lutions for web browsers do not treat the browser’s event
handling logic completely and accurately. A webpage is
reactive: Input events like mouse clicks, key presses and
network receives trigger JS functions called handlers. The
event handling logic of a browser is complex. Each input
event can trigger handlers registered not just on the node on
which the event occurs (e.g., the button which is clicked), but
also on its ancestors in the HTML parse tree. This can leak
information implicitly through the presence or absence of
links between the node and its ancestors. However, existing
work on IFC for web browsers either does not consider the
reactive nature of webpages at all (focusing, instead, only
on the sequential JS code within a handler) [14], [15], [13],
[20], [16] or it abstracts away from the details of the event
handling logic, thus side-lining the problem [17], [18].

In contrast, in this work we (a) Demonstrate through
working examples that information leaks through the event
loop logic are real (and subtle) and, thus, should not be
abstracted, (b) Enrich a formal model of the event loop of



a browser with fine-grained IFC to prevent such leaks, (c)
Prove that our proposed extension is sound by establish-
ing noninterference, a standard property of IFC, and (d)
Implement our IFC solution in WebKit, an in-production
browser engine used in many browsers (including Apple’s
Safari). Our IFC-enriched model of the event loops and the
noninterference proof are parametric in the sequential small-
step semantics and IFC checks of individual event handlers.
Additionally, our solution can be layered over any existing
label-based, fine-grained IFC solution for sequential JS that
satisfies noninterference, e.g., [14], [15]. To test and evaluate
the cost of our IFC checks, we extend Bichhawat et al.’s
IFC instrumentation for individual handlers in WebKit’s JS
bytecode interpreter [15].

As a further contribution, we observe empirically that
event handlers in web browsers do not necessarily execute
atomically. Every existing work on IFC in web browsers (and
beyond) incorrectly assumes the opposite. Chrome, Firefox
and Internet Explorer sometimes temporarily suspend an
event handler at specific API calls to handle other waiting
events. The suspended handlers resume after the other wait-
ing events have been handled. This behavior can be nested.
As we show through examples, this kind of preemption
can also cause implicit information leaks. We model this
preemption in our formalism and our IFC instrumentation
and implementation prevent leaks through preemption. This
adds complexity to our model: We cannot model the state
of the event loop with just one call stack for the current
event (as existing work does). Instead, we model the state
of the event loop with a stack of call stacks — the topmost
call stack is the state of the current event and the remaining
call stacks are the states of previously suspended events.
We note that in the future, web browsers are expected to
aggressively support cooperative yielding and resumption of
threads with multiple event loops (this is anticipated by the
HTML5 specification [21]); our IFC solution should provide
a stepping stone to such general settings.

Shortcoming 2: Browser APIs. Existing IFC solutions
for web browsers do not cover all APIs of the DOM
specification [22]. The Document Object Model or DOM
is the parsed, internal state of a webpage that includes all
visible and invisible content, embedded handlers and scripts,
JS primitive functions and global browser information. The
DOM can be read and modified from JS through many
native, standard APIs provided by every browser. These
APIs, called the DOM APIs, were introduced into browsers
in three stages, now dubbed DOM Levels 1, 2 and 3. The
DOM is the main shared state (memory or heap) for JS
code executing in the browser. Its APIs often have complex
implementations and, hence, any IFC solution should care-
fully instrument these APIs for IFC and account for that
instrumentation in the soundness proof. However, existing
IFC solutions for web browsers either completely ignore the

DOM [14], [13], [15] (and consider a JS core with a standard
heap), or instrument only a part of the DOM [20], [18], [17],
[23], [24]. Other work does not specify how far the DOM
was instrumented and does not prevent all leaks [16]. Formal
models of the DOM outside of IFC are limited — we know
of only two and both are partial [25], [26].

In our work, we model all DOM APIs up to and including
Level 3, and instrument them (in WebKit) to track fine-
grained taints and enforce IFC. This is nontrivial because
we had to consult the implementation of the DOM APIs
in WebKit to resolve ambiguities in the standard DOM
specification [22]. For instance, in the case of the API
getElementById(’id’), which is supposed to retrieve
a unique element id, the specification does not specify be-
havior when several elements have the same id. To resolve
such ambiguities, we turn to WebKit’s implementation. In
doing so, we also found a new set of leaks which arise due
to optimizations in WebKit. Our model of all DOM APIs
can be added to any prior sequential model of JS in the
form of extra primitive JS functions. Our noninterference
proof (for the event loop) also carefully analyzes our IFC
instrumentation of every DOM API and shows that our
design prevents information leaks. Our model of the DOM,
which may be of interest even outside of IFC, is formalized
as (type-checked) OCaml code and is available online from
the authors’ homepages. Due to lack of space, we do not
describe the DOM API or our instrumentation of it in any
detail in this paper, except through examples (we focus on
the conceptually harder event loop in the technical sections
of this paper).

Summary of contributions. To the best of our knowledge,
this is the first web browser IFC work that handles event
loops and the DOM up to Level 3. To summarize, we make
the following contributions.

- We formalize the event handling loop of a browser,
highlighting how it can leak secrets implicitly, and
develop a fine-grained dynamic IFC monitor for it.

- We develop a formal model of the DOM up to Level 3.
The model is abstracted from the DOM specification
and its implementation in an actual browser engine
(WebKit). We enrich our model with provisions for
fine-grained IFC.

- We prove a form of reactive noninterference for a
termination-insensitive attacker. Our proofs are para-
metric on preemption points and a provably sound IFC
monitor for sequential JavaScript.

- We implement these concepts in a fully-functional
browser (Apple’s Safari, based on WebKit) and observe
moderate performance.



1 l = false, t = false
2 if (h == false)
3 t = true
4 if (t != true)
5 l = true

Listing 1: Example for implicit flow

II. BACKGROUND

A. Information Flow Control

Information flow control (IFC) refers to controlling the
flow of (confidential) information through a program based
on a given security policy. Typically, pieces of information
are classified into security labels and the policy is a lattice
over labels. Information is only allowed to flow up the
lattice. For illustration purposes often the smallest non-trivial
lattice L < H is used, which specifies that public (low, L)
data must not be influenced by confidential (high, H) data. In
our instrumentation labels are drawn from a product lattice
where each dimension represents a unique web domain.
IFC can be used to provide confidentiality (or integrity)
of secret (trusted) information. We are only interested in
confidentiality here.

In general, information can flow along many channels.
Here, we consider explicit and implicit flows. Covert
channels like timing or resource usage are beyond
the scope of this work. An explicit flow occurs
as a result of direct assignment, e.g., the statement
public = secret + 1 causes an explicit flow from
secret to public. An implicit flow occurs due to the
control structure of the program. For instance, in the program
public = false; if (secret) public = true,
the final value of public is equal to the value of secret
even though there is no direct assignment mentioning both
secret and public. Leaking a bit like this can be
magnified into leaking a bigger secret bit-by-bit [27].

Research has considered static methods such as type
checking and program analysis, which verify the security
policy at compile time [28], [29], [30], [31], dynamic
methods such as black-box approaches as well as attaching
secrecy labels to runtime values and tracking them through
program execution [32], [33], [14], [34], [35], [36], and
hybrid approaches that combine both static and dynamic
analyses to add precision to the analysis [37], [38], [39],
[15] for handling the leaks described above. The correctness
of these approaches is often stated in terms of a well-defined
property known as noninterference [40], which basically
stipulates that high input of a program must not influence its
low output. While noninterference is too strong a property in
practice, it is a useful soundness check for IFC mechanisms.

We are interested in IFC through runtime monitoring with
labels attached to all values. Preventing explicit flows that
violate noninterference is trivial via runtime monitoring,
once all values in the system are labeled. However, it can

be difficult to prevent leaks due to implicit flows. Dynamic
IFC approaches usually use a notion of context label (PC),
which represents an upper bound on the labels of all the
values that have influenced the control flow at the current
instruction, and join this label with the label derived from
explicit flow for every variable assignment. However, it can
be shown that this is not sufficient for noninterference [41]
when labels attached to variables may change over time, as
even assignments in code that is not executed may lead to
implicit flows. Listing 1 illustrates unexecuted branches that
may leak information. This code snippet effectively copies
the (secret) value of h into the public variable l via another
public variable t without l being labeled secret. This is
because either the first condition is true or the second but
never both. The no-sensitive-upgrade (NSU) check [42], [32]
rejects such programs by prohibiting modification of a public
variable in a secret context (when the PC label is high),
terminating the program if it tries to do so. In this program,
when h is false, the assignment on line 3 is forbidden
and the program is terminated. Programs executed under
NSU satisfy the soundness property termination-insensitive
non-interference [29]. Intuitively, this soundness criterion
requires the absence of information leaks for an attacker who
cannot observe termination of programs (a formal definition
is given in Section IV).

B. Document Object Model and Event Handling

Document Object Model: The document object model
(DOM) is the parsed, internal state of a webpage that
includes all visible and invisible content, embedded han-
dlers and scripts, JS primitive functions and global browser
information. It can be accessed from JS programs via the
DOM API, which provides interfaces for JS programs to
read, modify, create and delete parts of its state. DOM API
calls have been added to browsers gradually in stages that
are dubbed levels. The current standard implemented in most
browsers is Level 3 (which subsumes Levels 1 and 2). The
DOM graph, which represents the visual content described
by HTML, can be navigated in various directions using API
calls, e.g., from a node to its parent, to its first and last
children, to its left and right siblings, etc.

Nodes of the DOM graph have various types, like an
element node, a text node, a document fragment and
many others. All of these are well-defined data structures
in the DOM specification [22]. A special kind of data
structure of significance to us is the live collection. It is
returned by some DOM search APIs. A live collection
always represents the current state of the DOM graph, i.e.,
changes in the DOM graph are reflected in future uses of
these collections. As an example, consider the function call
document.getElementsByTagName(’div’). This
calls returns a reference to a list containing all elements
(element nodes) that have the tag name div. If another node
with tag name div is added to the DOM graph after the call,



it will be present in subsequent uses of the list. Similarly, if
an element with tag name div is removed from the DOM
graph, this element is removed from the list automatically.

Event handling: Web pages may be reactive. They
can respond to events like mouse clicks, network re-
sponses and key presses by invoking event handlers,
which are JS functions. Every event has a target, a
node in the DOM graph, where the event originates
(e.g., if the mouse is clicked on a button, then the but-
ton would be the target of the resulting click event).
Event handlers for specific events can be associated
with every node programmatically through the browser
API node.addEventListener(event, handler,
boolean). Every handler is registered with one of the fol-
lowing attributes: target and bubble or capture and target by
setting the boolean third argument to false and true,
respectively. The meaning of these attributes is explained
below.

The event loop of a browser is complex. Browsers main-
tain a list of incoming, pending events called the event
queue. Events in the queue are processed one at a time (not
necessarily in FIFO order). The processing of an event is
called a dispatch. When an event is dispatched, the handlers
registered for the event associated with the event’s target
node are executed. Additionally, certain handlers registered
for the event associated with the nodes on the entire path
from the target to the root of the DOM graph are also
executed. This path is called the propagation path. To
dispatch an event, first, this propagation path is computed by
traversing the DOM graph. This path remains fixed during
event dispatch even though the shape of the DOM graph may
change due to the execution of handlers. Next, the handlers
are executed in three phases:
• The capture phase executes all capture and target

handlers associated with all nodes from the root to the
target’s parent, starting from the root.

• The target phase executes all the handlers associated
with the target.

• The bubble phase executes all target and bubble han-
dlers associated with all nodes from the target’s parent
to the root, starting from the target’s parent.

Finally, the browser may execute default actions (the
browser’s in-built actions) associated with the event. For
example, middle-clicking a url in Chrome opens the url in
a new tab.

Events can be dispatched by external actions (like a
physical mouse click) or programmatically using the API
call dispatchEvent(). When an event is dispatched
programmatically, default actions are usually not executed.
An exception to this is the click event.

Every dispatched event has three flags which can be
set by any executing event handler through API calls to
modify the execution of subsequent handlers. The flag
stopImmediatePropagation terminates handling of

1 var p = document.getElementById(’para’);
2 p.onclick = function() {
3 alert(’In click’);
4 p.innerHTML += ’click’;
5 };
6 window.onresize = function() {
7 p.innerHTML = ’resize ’;
8 };

Listing 2: Preemption in browsers

the event immediately after the current handler ends. No
other handlers are executed, but default actions are executed.
The flag stopPropagation is similar but it terminates
handling after all handlers associated with the current node
have executed. The flag defaultPrevented prevents the
execution of default actions.

Handler preemption: An event handler can be paused
or suspended at specific API calls like alert() or
confirm() that wait for user response. When suspended
at these APIs, some browsers choose to dispatch other events
in the event queue, which makes the execution of JS in these
browsers resemble cooperative scheduling. Consider the
snippet in Listing 2. Assume that the page has a paragraph
element with id para, which is bound to the variable p.
The script registers two handlers: one for the onclick
(click) event on p and the other for the onresize (resize)
event on the global object, window. The user clicks the
paragraph p, which displays an alert dialog box. Before
dismissing the dialog box, the user resizes the main window
thereby registering an onresize event. In some browsers,
the onresize handler will execute while the onclick
handler is still suspended. This will cause the word resize
to appear in the paragraph p before the word click. (We
verified this behavior on Chrome version 40.0.2214.111.)
On other browsers, resizing the window will not be allowed
until the alert dialog box is dismissed or the onresize
event will not be dispatched until the dialog box is dismissed
and onclick has finished execution. To account for this
browser-dependent behavior, we parametrize our model with
a set of preemption points — the API calls at which handler
execution may be preempted.

III. OVERVIEW OF CHALLENGES AND APPROACH

In this section, we highlight some possible information
leaks in client-side JS due to subtleties of handler preemp-
tion, the event loop logic, the DOM and browser optimiza-
tions, and explain at a high-level how our work prevents
these leaks. But, first, we explain our attacker model.

Approach and attacker model. We perform fine-grained,
flow-sensitive taint tracking in the DOM (and through the
event loop), so we assume here onward that taints are
attached to individual fields of DOM elements. Thus, the
parent, first and last child, and left and right sibling pointers



1 function foo() {
2 ...
3 pub = true;
4 if (sec)
5 preemption-point
6 ...
7 pub = false;
8 }
9

10 function bar() {
11 conf = pub;
12 }

Listing 3: Implicit leak via preemption

of a DOM node can have independent taints and the content
of the node can have yet another taint. This is quite standard
in fine-grained dynamic taint tracking [14], [15]. Conceptu-
ally, taints may be drawn from an arbitrary security lattice;
our prototype implementation uses a subset lattice where the
taint on a field is an upper bound on the set of web domains
which may have influenced the field. We also attach labels
to individual events and event handlers. A value v labeled
with label ` is written v`.

Our attacker resides at an arbitrary security level A of
the lattice. We assume that the attacker can observe all
references and values ` ≤ A that are reachable from
the global object (window object) of the browser. The
attacker cannot directly observe internal data structures like
the call-stack, event queues, etc. We limit attention to a
termination-insensitive attacker. Leaks due to termination,
timing, progress and other side channels are outside our
threat model.

Examples Through a series of examples, we demonstrate
subtle implicit leaks through handler preemption, event
loops, the DOM APIs and browser optimizations. These
pose a challenge for building a dynamic flow-sensitive IFC
monitor. For simplicity, our examples demonstrate only one-
bit leaks. In all our examples, we assume the lattice L < H
(low < high) and an attacker at level L.

Handler preemption: Our first example highlights a
possible leak due to preemption in the middle of a handler.
As noted earlier, every prior work on IFC for web browsers
(and reactive systems in general) ignores such preemption
and, hence, will miss this attack. Listing 3 describes two
handlers, foo and bar, for two arbitrary events e1 and
e2, respectively. We assume that both events are in the
event queue already and that the handler for e1, i.e., foo
is currently executing, while the other handler has not
yet started executing. In the function foo, we initialize a
variable pub to true and branch on a H-labelled variable
sec to decide whether or not to execute an instruction at
line 5, which is a preemption point according to the browser
semantics. If sec is true, then at line 5, foo will be
suspended and bar will start executing while pub is true.

From the code of bar, it is clear that the variable conf will
end up with the value true. If, on the other hand, sec
is false, then the preemption point is never executed, so
bar executes after foo sets pub to false and conf ends
with false. Hence, in a browser that preempts at line 5,
this program implicitly copies sec to conf.

The relevant question is how we may prevent this leak
with dynamic IFC. A naive solution, based on handling of
implicit flows in sequential programs, would be to carry
the PC from foo to bar at line 5, i.e., to execute bar
with PC = H if line 5 executes. Although intuitive, this
naive solution is unsound: It prevents the leak only if conf
is initially labeled L, but still allows the leak if conf is
initially labeled H . If conf is initially labeled L, when
sec is trueH , bar executes with PC = H and this
prevents the assignment confL = pub due to the no-
sensitive-upgrade (NSU) check. Hence, the program does
not leak (to a termination-insensitive attacker). However, if
conf is initially labeled H , this assignment is allowed, so
the program leaks information. More specifically, if conf
is initially labeled H , then conf ends with value trueH if
sec is trueH , and with value falseL if sec is falseH .
The final values of conf — trueH and falseL — are
distinguishable for the attacker. So, secH is leaked by the
program.

To solve this problem, we attach minimum PC labels to
all handlers and execute a handler at a preemption point
only when the handler’s PC label is at least as high as the
PC of the context. In this example, bar must have a label
at least H in order to execute after line 5. This minimum
label ensures that after bar executes, conf has label H
irrespective of earlier code paths so, trivially, there are no
information leaks. Note that we do not specify labels for
handlers through additional program annotations. Instead,
a handler inherits the label of the context in which the
handler was associated with the event. This is essential
for soundness, else the handler’s execution may implicitly
leak information from the context in which the handler was
associated with the event.

Event phases: As described in Section II, event han-
dling happens in several phases and the handlers executed in
response to an event depend on the shape of the DOM, which
is itself dynamic. This can result in implicit information
leaks unless the IFC monitor is carefully designed. The
example in Listing 4 illustrates this point. We have a low
variable pub initially set to false, and two nodes a and
b. The onClick handlers (the handlers invoked when the
mouse is clicked on the node) for a and b are set to aCk and
bCk, respectively. aCk is a capture and target phase handler
(third argument to addEventListener() is true on
line 2) and bCk is a target and bubble phase handler (third
argument to addEventListener() is false on line 3).
Based on a high variable sec, we either make b a child
of a or we do not. Then, on line 6, a mouse click is



1 pub = false
2 a.addEventListener ("click", aCk, true)
3 b.addEventListener ("click", bCk, false)
4 if (sec)
5 a.appendChild (b)
6 b.dispatchEvent ("click")
7
8 function aCk () {
9 pub = true

10 }
11 function bCk () { ... }

Listing 4: Example leak due to lack of propagation
path labels across event phases

programmatically dispatched on b. b is the target of the
event, so bCk will definitely execute. However, if sec is
true, then aCk will also execute (before bCk) because
aCk is registered as a capture phase handler and a is the
parent of b. The execution of aCk will change pub to true.
Hence, sec is copied to pub implicitly.

To prevent this leak, let us examine why the leak happens.
Essentially, depending on the value of sec, either there
exists a link between a and b or there does not. This link
then determines whether or not aCk executes. Hence, the
leak can be prevented by ensuring two things: (1) The link
between a and b is labeled with the PC when the link is
formed (here, the label would be H) and, (2) When a handler
tied to a node such as aCk is executed, the execution’s PC
is at least as high as the labels of all links on the path
from the target node to this node (in this case, the link
from a to b, which would be labelled H). In our DOM
instrumentation, (1) happens for free because links between
nodes are ordinary pointer fields, and all fields inherit the
PC label of the context upon update. On the other hand,
(2) requires special care: Our instrumentation executes all
handlers for an event with a PC at least as high as the
propagation path label, which is the join of the labels on
the pointers in the propagation path of the event’s target.
This subsumes (2) and also prevents similar implicit leaks.

Live collections: Some DOM API functions that search
the DOM graph return a live collection of nodes. A live
collection is automatically updated as nodes that match the
search criteria are added or removed from the DOM graph.
This can leak information implicitly. Listing 5 shows a
simple example. The variable nodes is bound to the live
collection of all nodes in the DOM that have the tag div.
The length (size) of this collection is snapshotted in the
variable x. Depending on the value of a high variable sec,
either a new node newNode with tag div is added to the
DOM or it is not. If the node is added, this will automatically
(and implicitly) update the live collection. The new length
of the live collection is snapshotted in y. If y and x are
different, then sec is true, else it is false. This is an
implicit leak of sec to x and y.

1 nodes =
2 document.getElementsByTagName("div")
3 x = nodes.length
4 newNode = document.createElement("div")
5 if (sec)
6 document.body.appendChild(newNode)
7 y = nodes.length

Listing 5: Example leak via live collections

Two recent proposals [24], [20] offer similar solutions
to this problem: They require the programmer to provide
a security label for every tag like div. The IFC monitor
ensures that this label is an upper bound on the PC of the
context in which any node with that tag is added to the
DOM. Any value computed from the live data structure,
e.g., length, inherits this label. In our example, the tag
div must have the label high in order for line 7 to execute.
So, nodes.length, x and y would all be labelled high,
preventing the leak.

Although elegant, this solution requires the programmer to
specify labels for each tag. Our approach, on the other hand,
does not require any assistance from the programmer. We
rely on the observation that browsers implement properties
of live data structures like length by traversing the DOM
graph.1 Consequently, simply applying our usual IFC checks
to the implementations of methods of live data structures
yields sound enforcement. In our example, if line 6 succeeds,
then due to the NSU check on pointer update, the last-child
pointer of document.body must already be labeled high.
Hence, irrespective of whether or not newNode is added,
traversing the DOM graph to compute the length field
will always return a high value. Hence, x and y will be
labelled high, preventing any leak. Note that our solution
requires fine-grained labels on all fields in the DOM (which
we have). Prior work mentioned above did not include a
full instrumentation of the DOM and, hence, could not have
adopted our solution.

Browser optimizations: Browsers often create auxiliary
internal data structures to speed up commonly invoked
DOM API functions. Any IFC instrumentation of the DOM
must also label these auxiliary data structures. This can be
subtle as we illustrate here. WebKit, the browser engine
we instrument, maintains a HashMap from node ids to
DOM nodes to speed up the very common lookup function
getElementById(’iden’), which returns the DOM
node with id iden. Whenever a node is inserted into the
DOM (as the child of another already present node), the
node is also added to this HashMap. However, for various
reasons, this map contains a subset of all nodes in the DOM.
If a certain id does not exist in the HashMap, then the DOM

1A live data structure is marked invalid as soon as there is any change
to the DOM. A subsequent method call on the data structure results in a
fresh DOM traversal.



1 c.setAttribute("id","ifc")
2 if (sec)
3 b.appendChild(c)
4 a.appendChild(b)
5 x = document.getElementById("ifc")

Listing 6: Example leak showing insufficiency of PC
for preventing leak via getElementById

must be traversed to search. Clearly, to prevent an implicit
leak, it is essential that the PC of the context in which a
node is added to the DOM also labels the entry of the node
in the HashMap (if the entry exists). However, it turns out
that just this labeling is insufficient in cases where the node
being added to the DOM has children.

As an illustration, consider the example of Listing 6.
Three nodes a, b and c have been created before the
program starts, but only a is already attached to the DOM.
Assume that b is a high node, i.e., its own label and its
fields are all labeled H . The program assigns c the id ifc,
which will be searched for later. Based on the value of a high
variable sec, c is either made a child of b or not. Then, b is
made a child of a. This adds b and possibly c to the DOM.
Since this instruction executes with PC = L, following the
labeling rule described above, c’s entry in the HashMap, if
any, will be labeled L. The last line of the program searches
for the id ifc in the DOM and stores the result in variable
x. At the end of the program, x will be nullH if sec is
falseH (note that the DOM traversal to discover that a
node with id ifc does not exist will pass through b, which
is labelled H and, hence, will return nullH ). On the other
hand, x will be cL if sec is trueH due to a successful
HashMap lookup. Since nullH and cL are distinguishable
for the adversary, this program leaks sec into x.

This leak happens because, when sec is true, we
completely ignore the H label of the link between b and
c when labeling c in the HashMap. The correct rule for
labeling the HashMap on insertion is that when a node, say
b, is added to the DOM graph, any node accessible from b
must be added to the HashMap with a label that is equal to
the join of all labels on the path from b to that node. With
this rule in place, when c is inserted into the HashMap, its
label is H , not L, and this prevents the leak.

IV. INFORMATION FLOW CONTROL FOR THE DOM AND
THE EVENT LOOP

Our central technical contribution is IFC-enhanced models
of the DOM Core Level 3 [22] and of the event loop of
a web browser, including event preemption. Our models
plugs into any model of sequential JS execution within a
handler if the sequential model uses dynamic fine-grained
taints for IFC. Our model of the DOM extends such a
sequential model with additional primitive functions (the
DOM API) and our model of event loops provides a wrapper
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Figure 1: State machine description of an event loop

around such a model, resulting in a reactive system. To prove
noninterference, we assume that the IFC on sequential JS
is noninterfering and satisfies some specific lemmas (like
the standard confinement lemma). The specific sequential
JS model we use is taken from [15].

IFC for the DOM. As described in Section II-B and
illustrated in Section III, the DOM is a graph whose nodes
correspond to various elements of a web page. Technically,
each node is a JS object. The standard rules of IFC from the
sequential JS apply to these objects as well. In particular,
every field of every node, including every pointer to the
node’s children, siblings and parent, is given a separate
security label. This label is always at least as high as the
PC of the context in which the field was last modified.

Separately, we build an OCaml model of all DOM API
functions. We follow the DOM specification [22] and refer
to its implementation in WebKit (our target browser engine)
to resolve ambiguities and to add additional data structures
like the HashMap of Section III(d), which are not part of
the specification. Finally, we instrument the API functions
with IFC checks. We follow the NSU rule to prevent implicit
flows. Two interesting aspects of the model were highlighted
in Section III(c) and (d). We do not describe this model in
any further detail here. Instead, in the rest of this section,
we focus on our model of a browser’s event loop and its
IFC enhancement.

A. The event loop and its IFC enhancement

As explained in Section II, the event loop is a transition
system that collects events and dispatches them to handlers
through a reasonably complex logic. Additionally, event
handlers can be preempted at browser-specific API calls.
Fig. 1 describes the event loop as an abstract state machine.
The machine starts in a suspended state (and returns to it
when there are no events; this transition is not shown). The
occurrence of an event (called “Fire event”) transitions the
machine to what we call the start phase. In this phase, the
propagation path, or the list of nodes from the target of the
event to the root of the DOM graph, is computed. This list



is fixed for the duration of the event’s dispatch. Then, the
machine transitions through the capture, target and bubble
phases described in Section II. In Fig. 1, the transitions are
labelled S2C (start to capture), C2T (capture to target), T2B
(target to bubble), B2D (bubble to default). The last phase of
execution is what we call the default phase, where the default
actions are executed.2 The execution of some handlers
can be bypassed using the flags stopPropagation and
stopImmediatePropagation. When either the default
actions are prevented (transition DP), an event has been
handled completely (transition RF), or a preemption point is
reached, the machine enters the suspend state, where it can
dispatch other events.

Concretely, we model a state of the machine as a pair κ =
〈Σ, θ〉, where Σ is a stack of frames and θ is a shared heap
(which includes the DOM graph). Each frame corresponds
to one event which has been dispatched, but whose handling
has not yet completed. The top most frame corresponds to
the event currently being handled; every other frame has
been suspended (prior to completion) to handle events in
frames above it. The stack frame is a rich data structure that
encodes the entire state of an event’s dispatch including the
state of the currently running handler, phase information and
handlers that have not yet run. The stack frame is a tuple
ν = 〈C,M, `,E,N,A,N ,H,P〉, where:
C : While a handler is active, C is a configuration of the

sequential JS machine, minus the heap, which is shared.
It has the form C = 〈ι, σ, ρ〉, where ι is a pointer to
the instruction (in the heap) to be executed next, σ is
the call stack of the current handler, and ρ is the PC-
stack for the current handler. We write ι(C), σ(C), and
ρ(C) to denote the current instruction, call-stack and
PC-stack of the configuration C. Between two phases
or between two handlers, when no handler is active, C
temporarily takes the form φ.

M : Either S (suspended) or R (running). All frames in Σ
except the topmost are always in the S state. When
the topmost frame is in state S, a new event can be
dispatched by adding a new frame on top.

` : The security label in which the frame ν was created.
This indicates the minimum level at which instructions
execute in that frame. The function Γ(ν) returns the
value of ` in frame ν.

E : A pointer to the event object for which the frame ν was
created.

N : A pointer to the target object for the event E.
A : A list of pointers to nodes in the propagation path of

the target. This list starts with the target’s parent node
and ends at the root of the DOM. The list is fixed when
the frame is created and does not change afterward.

2The words “start phase” and “default phase” are not taken verbatim
from the event specification [43]. We use these terms as they are similar
to capture phase, target phase and bubble phase, which the specification
mentions.

N : A list of pointers to nodes on which handlers have yet
to be run in the current phase. This list is re-populated
at every phase transition and gets smaller as the phase
progresses.

H : A list of pointers to event handlers (functions) at the
current node that are yet to be executed.

P : The current phase of execution for the event. It can be
S, C, T , B or D for start phase, capture phase, target
phase, bubble phase and default phase, respectively.

The transitions of this state machine are described as
small step operational semantics in Figure 2. The transition
relation has the form 〈Σ, θ〉�α 〈Σ′, θ′〉 where α = ·|(e, o)
is a label. α = (e, o) labels the firing of event e on target
object o. All other transitions are labeled α = ·. The top
frame of a stack S is denoted !S. Some of the rules make use
of meta functions like getPathLabel, which we describe
informally as we explain the rules; all of these functions have
a formal description in our OCaml model. We describe the
rules of Figure 2 below.
Local Computation-No Dispatch: When the

current instruction in the top frame of Σ (i.e., ι(!Σ.C)) is
neither dispatchEvent (programmatic event dispatch) nor a
preemption point, then we can execute this instruction using
the small-step semantics of sequential JS. The relation
θ, C → θ′, C ′ is the small-step transition relation of the
underlying sequential JS machine.
Local Computation-Dispatch: This rule executes

the programmatic dispatch call, dispatchEvent. We push a
new frame on Σ. The current frame’s state changes to S
(suspended). The function getPathLabel joins the labels
of the nodes on the propagation path of the event target
o. The function getAncestors returns the propagation
path of o. We set the label ` in the new top frame to the
join of the current PC and the path label, as explained in
Section III(b). The current phase of the new frame is set to
the start phase, S.
Preemption-Point: If the current instruction

is a preemption point according to the browser
semantics (captured in the browser-dependent check
isPreemptionPoint(ι(Cm)) = true), then this rule changes
the state of the topmost frame of Σ to S. This allows
another event to fire through the rule Fire Event (which
applies only when the topmost frame has state S).
Run Suspended Machine: If the frame on the top of

the stack Σ is currently suspended, then it may be resumed
by setting the state to R.
End: When the current handler has finished executing

(ι(Cm) = end), this rule sets the configuration C in the
top frame to φ. This allows the machine to transition phase
or execute the next handler.
Fire Event: This rule fires a queued (non-

programmatic) event e on the target node o. The rule
is mostly similar to Local Computation-Dispatch,
but additionally prevents the firing of a low event in a high



Local Computation-No Dispatch

!Σ.C = Cm !Σ.M = R θ,Cm → θ′, C′
m

isPreemptionPoint(ι(Cm)) = false
ι(Cm) 6= o.dispatchEvent(e)

Σ′ := Σ[!Σ.C := C′
m]

Σ, θ � Σ′, θ′

Local Computation-Dispatch

!Σ.C = Cm !Σ.M = R θ,Cm → θ, C′
m

ι(Cm) = o.dispatchEvent(e)
Σ′′ := Σ[!Σ.C := C′

m, !Σ.M := S]
e.eventType 6= “click” =⇒ e.defaultPrevented := true

`p = getPathLabel(o, θ) A = getAncestors(o, θ)
` := Γ(!ρ(Cm)) t `p

Σ′ := 〈φ, S, `, e, o,A, [], [],S〉 :: Σ′′

Σ, θ � Σ′, θ

Preemption-Point

!Σ.C = Cm !Σ.M = R θ,Cm → θ′, C′
m

isPreemptionPoint(ι(Cm)) = true
Σ′ := Σ[!Σ.C := C′

m, !Σ.M := S]

Σ, θ � Σ′, θ′

Run Suspended Machine

!Σ.C = Cm !Σ.M = S Σ′ := Σ[!Σ.M = R]

Σ, θ � Σ′, θ

End

!Σ.C = Cm !Σ.M = R ι(Cm) = end
Σ′ := Σ[!Σ.C := φ]

Σ, θ � Σ′, θ

Fire Event

!Σ.M = S `p = getPathLabel(o, θ)
A = getAncestors(o, θ) ` := `p t Γ(θ(e)) t Γ(θ(o))(

!Σ.C = φ ∧ ` ≥ Γ(!Σ)
)
∨
(
` ≥ Γ(!ρ(!Σ.C))

)
Σ′ := 〈φ, S, `, e, o,A, [], [],S〉 :: Σ

Σ, θ �(e,o) Σ′, θ

Start-to-Capture

!Σ.C = φ !Σ.P = S
nl = reverse(!Σ.A)

Σ′ := Σ[!Σ.N := nl, !Σ.P = C]
Σ, θ � Σ′, θ

Capture-to-Target

!Σ.C = φ !Σ.P = C
!Σ.N = [] !Σ.H = []

Σ′ := Σ[!Σ.N := [!Σ.N ], !Σ.P = T ]

Σ, θ � Σ′, θ

Target-to-Bubble

!Σ.C = φ !Σ.P = T
!Σ.N = [] !Σ.H = []

!Σ.E.bubbles = true =⇒ !Σ.N :=!Σ.A
Σ′ := Σ[!Σ.P = B]

Σ, θ � Σ′, θ

Bubble-to-Default

!Σ.C = φ !Σ.P = B !Σ.N = []
!Σ.H = [] !Σ.E.defaultPrevented = false
nl = getDefaults(!Σ.A, !Σ.N, !Σ.E.bubbles)

Σ′ := Σ[!Σ.N := nl, !Σ.P = D]

Σ, θ � Σ′, θ

Default Prevented

!Σ.C = φ !Σ.P = B !Σ.N = []
!Σ.H = [] !Σ.E.defaultPrevented = true

Σ′ := Σ[!Σ.P = D]

Σ, θ � Σ′, θ

Remove Frame

!Σ.C = φ !Σ.P = D !Σ.N = [] !Σ.H = []
Σ′ := Σ− !Σ

Σ, θ � Σ′, θ

Get Event Handlers

!Σ.C = φ !Σ.N = n :: N ′ !Σ.H = []
!Σ.E.stopPropagation = false

ehl := getEventHandlers(!Σ.E, n, !Σ.P, θ)
Σ′ := Σ[!Σ.N := N ′, !Σ.H := ehl]

Σ, θ � Σ′, θ

Stop Propagation

!Σ.C = φ !Σ.H = []
!Σ.E.stopPropagation = true
Σ′ := Σ[!Σ.N := [], !Σ.P := B]

Σ, θ � Σ′, θ

Run Event Handlers

!Σ.C = φ !Σ.H = (`c, fm) :: H′
!Σ.E.stopImmediatePropagation = false

ρ(Cm) := [!Σ.` t `c t Γ(fm)]
ι(Cm) := null σ(Cm) = emptyCallFrame

Σ′ := Σ[!Σ.C := Cm, !Σ.H := H′]
Σ, θ � Σ′, θ

Stop Immediate Propagation

!Σ.C = φ !Σ.E.stopImmediatePropagation = true
Σ′ := Σ[!Σ.N := [], !Σ.H := [], !Σ.P := B]

Σ, θ � Σ′, θ

Figure 2: Semantics of event handling



context, to handle the problem described in Section III(a).
Start-to-Capture: This rule transitions from the

start to the capture phase. The pending node list N is
initialized to nodes which must be traversed during the
capture phase, which is the reverse of the propagation
path, A.
Capture-to-Target: If the current phase is capture

(C) and it has ended, i.e., there is currently no executing
handler (Cm = φ), and the node list N and the event handler
list H are both empty, then this rule shifts the machine to the
target phase. In the target phase, only the target node (N )
has to be processed, so the pending node list N is initialized
to [!Σ.N ].
Target-to-Bubble: This is similar to

Capture-to-Target but transitions from the target
phase to the bubble phase. In the bubble phase, all nodes on
the propagation path A must be processed, so the pending
node list N is initialized to A.
Bubble-to-Default: Once the bubble phase ends,

we transfer to the default phase, but only if the event E’s
flag defaultPrevented is unset. In the default phase,
default actions will be run on all nodes provided by the
browser-specific function getDefaults(), so we initialize the
pending node list N to the output of this function.3

Default Prevented: If at the end of the bubble
phase E.defaultPrevented is set, then we skip the
default phase. We set the phase to D and the pending node
list and the pending handler list to empty. This emulates the
end of the default phase.
Remove Frame: If there is no executing handler (Cm =

φ), the phase is set to D (default), and the pending node list
N and the pending event handler list H are both empty,
then the current event has been fully handled. So, the top
(current) frame of the stack (!Σ) is removed.
Get Event Handlers: If no handler is currently ex-

ecuting (Cm = φ), and the pending handler list H is empty,
then all the handlers in the current node have been processed.
So, we obtain the handlers for the next node in the pending
node list N using the function getEventHandlers. This
function takes as parameters the event, the (next) node, the
phase and the heap and returns a list of event handlers. This
rule applies only if the stopPropagation flag of the
event is unset.
Stop Propagation: In the same starting state as the

previous rule, if the stopPropagation flag of the event
is set, then the current phase is set to B and the pending node
list is set to empty. This new state emulates the end of the
bubble phase and will immediately transition to the default
phase by rule Bubble-to-Default, thus skipping any
remaining parts of the capture, target and bubble phases.

3In Safari, default actions are executed on the target node and its
ancestors. The specification does not prescribe any specific list of nodes
for the default phase.

Run Event Handlers: If there is no executing han-
dler (Cm = φ) and stopImmediatePropagation is
unset, then this rule starts executing the next handler in the
pending handler list H. The notable aspect is that the PC of
the new execution (the only frame in the new ρ) is obtained
by joining the PCs of the top frame of Σ (!Σ.`), the PC of
the new handler (Γ(fm)) and the PC when this handler was
registered with this node (`c).
Stop Immediate Propagation: In the same initial

state as the previous rule, if the stopImmediateProp-
agation flag of the event is set, then the current phase is
set to B and the pending node list and the pending event
handler list are both set to empty, directly bringing the state
to the end of the bubble phase.

B. Correctness of IFC

We formally prove soundness of our IFC instrumentation
of our model of the DOM, the event loop and the sequential
JS semantics by proving the standard property called termi-
nation insensitive noninterference. This property says that
two runs with equal low-observable inputs produce equal
low-observable outputs. We assume that the IFC enforce-
ment on the sequential JS semantics satisfies some basic
properties, which are described in the appendix. Roughly,
the assumptions say that every small step of the sequential
JS semantics must preserve a standard bisimulation relation
between two runs of the program starting from low-equal
memories. We describe these assumptions explicitly in the
appendix and later discharge them by for a specific instance
of the sequential JS machine from [15] extended with DOM
API. The details of that extension are provided in the
appendix. Here, we focus on the proofs of noninterference
for our reactive model of event loops. For simplicity, we
consider only a two-point security lattice L < H , but our
definitions and theorems generalize to arbitrary lattices.

As usual, we define equivalence κ1 ∼ κ2 of states
κ = 〈Σ, θ〉 of our transition relation.4 To do this, we
must also define the equivalence of sequential machine
configurations C, of node and event handler lists and of
stack frames. We show these definitions below. The defi-
nition of heap equivalence θ1 ∼ θ2 is inherited from the
sequential JS model and says that the parts of the heaps
θ1 and θ2 reachable from their global objects by traversing
only L-labelled pointers must be equal. Similarly, we also
inherit definitions of call stack equivalence and PC stack
equivalence, σ1 ∼ σ2 and ρ1 ∼ ρ2, from the sequential JS
model.

Definition 1. Two machines C1 and C2 are equivalent,
written C1 ∼ C2, if either one of the following hold:

4Technically, ∼ is parametrized by a partial bijection β between names of
heap locations allocated at corresponding points in the two runs. However,
we omit the partial bijection here for readability. The appendix resolves the
notation.



1) C1 = 〈ι1, σ1, ρ1〉, C2 = 〈ι2, σ2, ρ2〉 and
a) (ρ1 ∼ ρ2)
b) (σ1 ∼ σ2)
c) (Γ(!ρ1) = Γ(!ρ2) = L ∧ ι1 = ι2) or (Γ(!ρ1) =

Γ(!ρ2) = H))

2) C1 = C2 = φ

Definition 2. Two lists of nodes N1 and N2 are equivalent,
written N1 ∼ N2, iff |N1| = |N2| ∧ ∀i ∈ |N1|. N1[i] ∼
N2[i].

Definition 3. Two event handler lists H1 and H2 are
equivalent, written H1 ∼ H2, iff |low(H1)| = |low(H2)|
and for all i, low(H1)[i] ∼ low(H2)[i] where low is defined
as:

low(nil) := nil

low((`c, eH) :: H) :=

{
eH :: low(H) if `c = L

low(H) if `c 6= L

The above definition states that two event handler lists
are low-equal when the subsequences of low-visible event
handlers in them are equal. (Note that event handlers eH
are JS function objects, so the low(H1)[i] ∼ low(H2)[i] is
the equivalence on JS objects from the sequential model.)

Next we define the equivalence of stack frames ν and
the equivalence of stacks Σ. Intuitively, two frames are
equivalent if they are labeled H or each of their respective
elements are equivalent.

Definition 4. Two frames ν1 and ν2 in the stack of machine
configurations are equivalent, written ν1 ∼ ν2, if either:

1) Γ(ν1) = H ∧ Γ(ν2) = H or
2) ν1.C ∼ ν2.C, Γ(ν1) = Γ(ν2), ν1.E ∼ ν2.E,

ν1.N ∼ ν2.N, ν1.A ∼ ν2.A, ν1.N ∼ ν2.N ,
ν1.H ∼ ν2.H, ν1.P = ν2.P and
if Γ(!ρ(ν1.C)) = Γ(!ρ(ν2.C)) = L, then ν1.M =
ν2.M

Definition 5. Given two stacks of machine configurations
Σ1 and Σ2, suppose:

1) ν1 is the first node in Σ1 s.t. Γ(ν1) = H
2) ν2 is the first node in Σ2 s.t. Γ(ν2) = H
3) Σ′1 is the prefix of Σ1 up to but not including ν1

4) Σ′2 is the prefix of Σ2 up to but not including ν2

Then, Σ1 ∼ Σ2, iff (1) |Σ′1| = |Σ′2|, and (2) ∀i ≤
|Σ′1|. (Σ′1[i] ∼ Σ′2[i]).

Definition 6 (κ-equivalence). Two states κ = 〈Σ, θ〉 and
κ′ = 〈Σ′, θ′〉 are said to be equivalent, written κ ∼ κ′, iff
Σ ∼ Σ′ and θ ∼ θ′.

We can now state our main noninterference theorem.

Theorem 1 (Termination-insensitive noninterference).
If κ1 ∼ κ2, κ1 �α κ

′
1 and κ2 �α κ

′
2, then either:

• κ′1 ∼ κ′2 or
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• κ′1 ∼ κ2 or
• κ1 ∼ κ′2.

We prove this theorem by setting a bisimulation relation
κ1Rκ2 which is equivalent to κ1 ∼ κ2 and additionally pro-
vides enough structure to establish the theorem inductively.
This relation is shown in the appendix, together with a proof
of the theorem.

V. IMPLEMENTATION

We implement the IFC semantics described in Section IV
in WebKit, a popular browser engine used in a number
of browsers. Our implementation is built on top of the
hybrid and optimized IFC implementation for JS bytecode
from [15]. That implementation only instruments the se-
quential JS interpreter. We additionally instrument the DOM
APIs, the event loop, and all native JS methods in the
Array, RegExp, and String objects. Following [15], our
implementation targets WebKit build #r122160 and works
with the Safari web browser, version 6.0. All experiments are
reported on a 3.2GHz Quad-core Intel Xeon processor with
8GB RAM, running Mac OS X version 10.7.4. Since [15]
and our extension only target the bytecode interpreter, we
disable JIT in all our experiments.

We attach security labels to every node in the DOM
graph and all its properties, including pointer to other nodes.
We then add appropriate IFC checks in the native C code
implementing all DOM APIs up to Level 3. Additional
instrumentation carries the labels from the native C code
to the JS interpreter, where IFC checks are already provided
by [15]. We make similar changes to the event loop, labeling
every event and event handler. Our work adds approximately
2,300 lines of code above the 4,500 lines of initial instrumen-
tation from [15]. Our implementation stops the execution of
the program when it detects an IFC violation but for the
purpose of measuring performance overheads reported here,
we ignore violations.

We evaluate our instrumentation on the Dromaeo DOM
Core benchmark [44], which measures the performance
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of various operations on the DOM. We find an average
overhead of approximately 71% over the uninstrumented
browser. Normalized overheads on different kinds of tests
are shown in Figure 3 (standard deviations on individual tests
were small, ranging from 0.17% to 8.45%). To get a more
realistic evaluation, we also tested our instrumentation on the
Alexa Top 10 websites [45]. We measured the execution time
of the JS that loads initially on each website’s front page,
without any user interaction. The graph in Figure 4 shows
normalized execution time. Error bars are standard devia-
tions. The average overhead is approximately 32% and the
worst overhead is around 60%. Note that both the Dromaeo
and Alexa tests are very performance-intensive and do not
count common browser delays like network communication
and page rendering in the baseline. Compared to a baseline
that includes these delays, our overheads are negligible.

Finally, as a sanity check, we run the very popular Sun-
Spider benchmark [46]. SunSpider is a pure JS benchmark
that does not cover events or the DOM, so it does not really
execute the code paths we have instrumented. As a result,
the overheads we get are similar to those of [15]. These
overheads are shown in the appendix.

VI. RELATED WORK

We compare briefly to the most closely related work.
Russo et al. [23] developed the first dynamic IFC monitor for
an imperative language with DOM-like trees. In particular,
they highlight information leaks via deletion and navigation
of nodes in the DOM and show how their monitor can
prevent them. The work does not cover live collections or
event handling. Almeida-Matos et al. [24] provide an IFC
monitor for a subset of the DOM (for a language similar
to [23]) and also extend it for live collections. Their work
covers only a part of the DOM and requires programmer

provided annotations for handling live collections, which our
method does not, as explained in Section III(c).

Hedin et al. [14], [20] develop a source-level interpreter
for a core of JS with dynamic IFC checks. The interpreter is
written from-scratch and provides an alternate code path for
JS execution in a browser through a plug-in. In comparison,
we build on [15], which works at the level of JS bytecode
in WebKit and uses native WebKit code paths (which adds
several order of magnitude less overhead). Besides, that
work is limited to core JS without the DOM or events.
COWL [19] is a recent system for improving security by
confining JavaScript in web browsers. COWL uses coarse-
grained labels at the level of browsing context (page, frame
or workers) unlike our design that relies on fine-grained
labels and, hence, offers higher precision. Kerschbaumer
et al. [16] build an implementation of an information flow
monitor for WebKit but do not handle all implicit flows. A
black-box approach to enforcing non-interference is based
on secure multi-execution (SME) [36]. Bielova et al. [17]
and De Groef et al. [18] implement SME for web browsers.
These systems do not attach labels to specific fields in the
DOM. Instead, labels are attached to individual DOM APIs.

Gardner et al. [25] developed a formal specification for a
minimal subset of DOM Level 1. Our formal specification
goes beyond this and covers up to DOM Level 3. Lerner
et al. [47] develop a formal model for the event handling
mechanism of web browsers, but do not consider IFC. Our
model additionally adds support for preemption of event
handlers. The idea of developing a formal model for web
browsers traces lineage to Featherweight Firefox [26], an
OCaml model of the reactive core of a web browser. Both
the DOM and the event handling mechanism are modeled,
but abstractly, e.g., preemption is not modeled, nor are many
DOM APIs.

VII. CONCLUSION

Although information flow control (IFC) for web browsers
is a well-studied topic, two central browser aspects —
event handling and the DOM — have not received enough
attention. As we observe, both event handling and the
DOM can be a source of subtle information flow leaks.
Accordingly, we develop a formal model of event handling
with preemption and of the DOM APIs up to Level 3, both
fully instrumented for IFC. We prove our instrumentation
sound, implement our ideas in WebKit and observe moderate
overhead due to our IFC checks.
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A. Proofs of IFC for Event handling

Definition 1. Two machines C1 and C2 are low-equivalent,
written C1 ∼β C2, if either:

1) C1 = 〈ι1, σ1, ρ1〉, C2 = 〈ι2, σ2, ρ2〉, and (ρ1 ∼β ρ2) ∧
(σ1 ∼β σ2) ∧ (Γ(!ρ1) = Γ(!ρ2) = L =⇒ ι1 = ι2) or

2) C1 = C2 = φ

Definition 2. Two lists of nodes N1 and N2 are equivalent,
written N1 ∼β N2, iff |N1| = |N2| ∧ ∀i ∈ |N1|. N1[i] ∼β
N2[i].

Definition 3. Two event handler lists H1 and H2 are
equivalent, written H1 ∼β H2, iff |low(H1)| = |low(H2)|
and for all i, low(H1)[i] ∼β low(H2)[i] where low is defined
as:

low(nil) := nil

low((`c, eH) :: H) :=

{
eH :: low(H) if `c = L

low(H) if `c 6= L

Definition 4. Two frames ν1 and ν2 in the stack of machine
configurations are equivalent, written ν1 ∼β ν2, if either:

1) Γ(ν1) = H ∧ Γ(ν2) = H or
2) ν1.C ∼β ν2.C, Γ(ν1) = Γ(ν2), ν1.E ∼β ν2.E,

ν1.N ∼β ν2.N, ν1.A ∼β ν2.A, ν1.N ∼β ν2.N ,
ν1.H ∼β ν2.H, ν1.P = ν2.P and
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if Γ(!ρ(ν1.C)) = Γ(!ρ(ν2.C)) = L, then ν1.M =
ν2.M

Definition 5. Given two stacks of machine configurations
Σ1 and Σ2, suppose:

1) ν1 is the first node in Σ1 s.t. Γ(ν1) = H
2) ν2 is the first node in Σ2 s.t. Γ(ν2) = H
3) Σ′1 is the prefix of Σ1 up to but not including ν1

4) Σ′2 is the prefix of Σ2 up to but not including ν2

Then, Σ1 ∼β Σ2, iff (1) |Σ′1| = |Σ′2|, and (2) ∀i ≤
|Σ′1|. (Σ′1[i] ∼β Σ′2[i]).

Definition 6 (κ-equivalence). Two states κ = 〈Σ, θ〉 and
κ′ = 〈Σ′, θ′〉 are said to be equivalent, written κ ∼β κ′, iff
Σ ∼β Σ′ and θ ∼β θ′.

Definition 7. The function Γ(κ) for a state κ = 〈Σ, θ〉 is
defined as:
Γ(κ) = Γ(!Σ) t `c where `c = (if (!Σ.C 6=
φ) then Γ(!ρ(!Σ.C)) else ⊥)

Definition 8 (Transitions). Transitions �H
α and �L

α are
defined as:

1) κ1 �H
α κ2: Γ(κ1) ≥ H

2) κ1 �L
α κ2: Γ(κ1) = L

Definition 9 (Bisimulation). A relation R between con-
figurations (κ := 〈Σ, θ〉) is called a bisimulation, written
κ1Rκ2, iff:

1) κ1 ∼β κ2

2) κ1 �H
α κ′1 =⇒ κ′1Rκ2

3) κ2 �H
α κ′2 =⇒ κ1Rκ′2

4) κ1 �L
α κ
′
1 =⇒ Γ(κ′1) ≥ H =⇒ κ′1Rκ2

5) κ2 �L
α κ
′
2 =⇒ Γ(κ′2) ≥ H =⇒ κ1Rκ′2

6) κ1 �L
α κ
′
1 =⇒ κ2 �L

α κ
′
2 =⇒ Γ(κ′1) = Γ(κ′2) =⇒

κ′1Rκ′2
Assumption 1 (Sequential Machine - Confinement Lemma).
Suppose C = 〈ι, σ, ρ〉, C ′ = 〈ι′, σ′, ρ′〉, 〈θ, C〉 → 〈θ′, C ′〉
and Γ(!ρ) = H , then ρ ∼ ρ′, σ ∼βρ,ρ′ σ′ and θ ∼β θ′

Assumption 2 (Sequential Machine - Supporting Lemma 1).
Suppose C1 = 〈ι, σ1, ρ1〉, C2 = 〈ι, σ2, ρ2〉,
C ′1 = 〈ι′1, σ′1, ρ′1〉, C ′2 = 〈ι′2, σ′2, ρ′2〉
〈θ1, C1〉 → 〈θ′1, C ′1〉,
〈θ2, C2〉 → 〈θ′2, C ′2〉,
ρ1 ∼ ρ2, Γ(!ρ1) = Γ(!ρ2) = L, Γ(!ρ′1) = Γ(!ρ′2) and
(σ1 ∼βρ1,ρ2

σ2) ∧ (θ1 ∼β θ2)

then ρ′1 ∼ ρ′2, and (σ′1 ∼
β
ρ′1,ρ

′
2
σ′2) ∧ (θ′1 ∼β θ′2)).

Assumption 3 (Sequential Machine - Supporting Lemma 2).
Suppose
C ′0 = 〈ι0, σ′0, ρ′0〉, C ′′0 = 〈ι0, σ′′0 , ρ′′0〉,
C ′1 = 〈ι′1, σ′1, ρ′1〉, C ′2 = 〈ι′2, σ′2, ρ′2〉,
C ′n = 〈ι′n, σ′n, ρ′n〉, C ′′m = 〈ι′′m, σ′′m, ρ′′m〉 and

1) 〈θ′0, C ′0〉 → 〈θ′1, C ′1〉 →n−1 〈θ′n, C ′n〉,
2) 〈θ′′0 , C ′′0 〉 → 〈θ′′1 , C ′′1 〉 →m−1 〈θ′′m, C ′′m〉,

3) (ρ′0 ∼ ρ′′0), (σ′0 ∼
β
ρ′0,ρ

′′
0
σ′′0 ), (θ′0 ∼β θ′′0 ),

4) (Γ(!ρ′0) = Γ(!ρ′′0) = L), (Γ(!ρ′n) = Γ(!ρ′′m) = L),
5) ∀(0 < i < n).(Γ(!ρ′i) = H) ∧ ∀(0 < j <

m).(Γ(!ρ′′j ) = H),
then
(ι′n = ι′′m), (ρ′n ∼ ρ′′m), (σ′n ∼

β
ρ′n,ρ

′′
m
σ′′m), and (θ′n ∼β θ′′m).

We discharge these assumptions later in the appendix (by
proving the lemma 4, lemma 5 and lemma 6) for a specific
instance of the sequential machine from [15] extended with
the proofs for the DOM API.

Lemma 1 (Confinement). Given (κ1 = 〈Σ1, θ1〉) ∼β (κ2 =
〈Σ2, θ2〉) and κ1 �H

α κ′1 then κ′1 ∼β κ2

Proof: Say κ′1 = Σ′1, θ
′
1 To prove: Σ′1 ∼β Σ2 and

θ′1 ∼β θ2.
Proof by case analysis on the derivation rules of the concur-
rent machine:

1) Local Computation-no dispatch: θ1 ∼β θ′1 from con-
finement lemma (Lemma 4) of sequential machine and
θ1 ∼β θ2, so θ′1 ∼β θ2. To show Σ′1 ∼β Σ2:
• If Γ(!Σ1) ≥ H , then the low part of Σ1 remains the

same. Hence, Σ′1 ∼β Σ2

• If Γ(!Σ1) = L∧!Σ1.C 6= φ ∧ Γ(!ρ(!Σ1.C)) ≥ H ,
then !Σ2.C 6= φ ∧ Γ(!ρ(!Σ2.C)) ≥ H . From
confinement and supporting lemma 2 (Lemmas 4
and 6), !Σ′1.C ∼β !Σ2.C. Other parts of Σ1 remain
unchanged in Σ′1. Thus, Σ′1 ∼β Σ2.

2) Local Computation-dispatch:
θ′1 = θ1 ∼β θ2. To show Σ′1 ∼β Σ2:
a) If Γ(!Σ1) ≥ H , then Γ(!Σ′1) ≥ H . Thus, the low

parts of Σ1 remain unchanged. Hence, Σ′1 ∼β Σ2.
b) If Γ(!Σ1) = L ∧ !Σ1.C 6= φ ∧ Γ(!ρ(!Σ1.C)) ≥ H ,

then Γ(!ρ(!Σ2.C)) ≥ H . From Lemmas 4 and 6,
!Σ′′1 .C ∼β !Σ2.C and the remaining low part of Σ1

remains unchanged. By definition 1, 4 and 5, Σ′1 ∼β
Σ2.

3) Preemption-point: (θ′1 = θ1) ∼β θ2. To show: Σ′1 ∼β
Σ2

a) If Γ(!Σ1) ≥ H , then Γ(!Σ′1) ≥ H . Thus, the low
parts of Σ1 remain unchanged. Hence, Σ′1 ∼β Σ2.

b) If Γ(!Σ1) = L ∧ C1 6= φ ∧ Γ(!C1.ρ) ≥ H , then
Γ(!C2.ρ) ≥ H . From Lemmas 4 and 6, !Σ′1.C ∼β
!Σ2.C and the remaining low part of Σ1 remains
unchanged. By definition 1, 4 and 5, Σ′1 ∼β Σ2.

4) End: θ′1 = θ1 ∼β θ. To show Σ′1 ∼β Σ2:
a) If Γ(!Σ1) ≥ H then Γ(!Σ′1) ≥ H . Thus, Σ′1 ∼β Σ2.
b) If Γ(!Σ1) = L. As end is the last instruction,
ρ(!Σ1.C1) is empty from sequential machine seman-
tics.

5) Fire Event: θ′1 = θ1 ∼β θ2. To show Σ′1 ∼β Σ2:
a) If Γ(!Σ1) ≥ H , then Γ(!Σ′1) ≥ H . Thus, the low

parts of Σ1 remain unchanged. Hence, Σ′1 ∼β Σ2.



b) If !Σ1.C 6= φ ∧ Γ(!ρ(!Σ1.C)) ≥ H , then Γ(!Σ′1) ≥
H . The low part of Σ1 remains the same, i.e., Σ1 is
unchanged in Σ′1. As Σ1 ∼β Σ2, Σ′1 ∼β Σ2.

c) Γ(!Σ1) = L ∧ Γ(α) ≥ H: Γ(!Σ′1) ≥ H . The
low part of Σ1 remains the same. As Σ1 ∼β Σ2,
Σ′1 ∼β Σ2.

6) Start-to-Capture, Capture-to-Target, Target-to-Bubble,
Bubble-to-Default, Default Prevented, Get Event Han-
dlers, Stop Propagation, Run Event Handlers, Stop
Immediate Propagation: θ′1 = θ1 ∼β θ2. To show
Σ′1 ∼β Σ2:
a) If Γ(!Σ1) ≥ H , then Γ(!Σ′1) ≥ H . Thus, the low

parts of Σ1 remain unchanged. Hence, Σ′1 ∼β Σ2.
b) !Σ1.C = φ so it can’t be the case that Γ(!Σ1) = L

7) Remove Frame: θ′1 = θ1 ∼β θ2. To show Σ′1 ∼β Σ2:
a) If Γ(!Σ1) ≥ H , then Γ(!Σ′1) = L or Γ(!Σ′1) = H .

If Γ(!Σ′1) = L, then it is the last L labeled frame
in Σ1. Thus, the low parts of Σ1 remain unchanged.
Else if Γ(!Σ′1) = H , still the low parts of Σ1 remain
unchanged. Hence, Σ′1 ∼β Σ2.

b) !Σ1.C = φ

8) Run Suspended Machine: θ′1 = θ1 ∼β θ2. To show
Σ′1 ∼β Σ2:
a) If Γ(!Σ1) ≥ H , then Γ(!Σ′1) ≥ H . Thus, the low

parts of Σ1 remain unchanged. Hence, Σ′1 ∼β Σ2.
b) Γ(!ρ(!Σ1.C)) ≥ H: Σ′1 remains unchanged from Σ1

except for !Σ1.M . By definition 4, !Σ′1 ∼β !Σ2. Thus,
Σ′1 ∼β Σ2.

Lemma 2. Let (κ1 = 〈Σ1, θ1〉) ∼β (κ2 = 〈Σ2, θ2〉). If
κ1 �L

α κ
′
1 and Γ(κ′1) ≥ H then κ′1 ∼β κ2

Proof: Let κ′1 = Σ′1, θ
′
1 To prove: Σ′1 ∼β Σ2 and

θ′1 ∼β θ2.
Proof by case analysis on the derivation rules of the concur-
rent machine:

1) Local Computation-no dispatch, Preemption-point: Ap-
ply on branch rules as Γ(κ′1) ≥ H . Thus, θ1 = θ′1 and
σ(!Σ1.C) = σ(!Σ′1.C). θ′1 = θ1 ∼β θ2. σ(!Σ′1.C) =
σ(!Σ1.C) ∼β σ(!Σ2.C). Thus, Σ′1 ∼β Σ2.

2) Local Computation-dispatch, Fire Event: !Σ′1.C = φ
hence Γ(!Σ′1) ≥ H .

3) End, Start-to-Capture, Capture-to-Target, Target-to-
Bubble, Bubble-to-Default, Default Prevented, Remove
Frame, Get Event Handlers, Stop Propagation, Stop
Immediate Propagation: Since !Σ′1.C = φ therefore
Γ(!Σ′1) ≥ H and that can happen only if Γ(!Σ1) ≥ H .
Hence case doesn’t apply.

4) Run Event Handlers: θ′1 = θ1 ∼β θ2. To show
Σ′1 ∼β Σ2. Since, Γ(!Σ1) = L therefore Γ(fm) ≥ H
and hence Γ(!ρ(!Σ′1.C)) ≥ H . As the first node of
ρ(!Σ′1.C) is labeled H , we do not compare the call-

stacks (σ). Also !Σ′1.H ∼β !Σ2.H. Thus, Σ′1 ∼β Σ2.
5) Run Suspended Machine: θ′1 = θ1 ∼β θ2. To show

Σ′1 ∼β Σ2: ρ(!Σ′1.C) = ρ(!Σ1.C) ∼β ρ(!Σ2.C). Thus,
Γ(κ1) ≥ H . (Case does not apply)

Lemma 3 (Simulation). Given (κ1 = 〈Σ1, θ1〉) ∼β (κ2 =
〈Σ2, θ2〉).
If κ1 �L

α κ′1, κ2 �L
α κ′2 and Γ(κ′1) = Γ(κ′2) then ∃β′ :

((β′ ⊇ β) ∧ κ′1 ∼β
′
κ′2

Proof: Let κ′1 = 〈Σ′1, θ′1〉 and κ′2 = 〈Σ′2, θ′2〉.
To prove: Σ′1 ∼β Σ′2 and θ′1 ∼β θ′2.
Case analysis on the derivation rules of the concurrent
machine:

1) Local Computation-no dispatch: For any new objects a
and b that are created, β′ = β∪(a, b). From supporting
lemma 1 (Lemma 5) θ′1 ∼β

′
θ′2 and !Σ′1.C ∼β

′
!Σ′2.C.

Thus, Σ′1 ∼β
′

Σ′2.
2) Local Computation-dispatch: β′ = β. θ′1 = θ1 ∼β

′

θ2 = θ′2. Σ1 and Σ2 are updated in 2 steps:
• !Σ′′1 .C ∼β′ !Σ′′2 .C from Lemma 5 and !Σ′′1 .M =

!Σ′′2 .M = S. Thus, Σ′′1 ∼β
′

Σ′′2 .
• Let the new frames pushed on top of

Σ′′1 and Σ′′2 be ν1 and ν2, respectively.
ν1.C = ν2.C = φ , ν1.E = (σ(!Σ1.C)).arg [1] ∼β′

(σ(!Σ1.C)).arg [1] = ν2.E, ν1.N =
(σ(!Σ1.C)).arg [0] ∼β′ (σ(!Σ1.C)).arg [0] = ν2.N ,
ν1(aL) = getAncestors(ν1.N, θ1) ∼β′

getAncestors(ν2.N, θ2) = ν2(aL),
ν1(N ) = ν2(N ) = [], ν1(H) = ν2(H) = []
and ν1(P ) = ν2(P ) = S. For ν1.` and ν2.` the
following cases arise from the heap-equivalence
definition:
– The path from o to root consists of only
L pointers (pointer label corresponds to the
Γ(parentLabel)) in both cases. In that case
ν1.` = ν2.` = L.

– There is at least one H pointer in the path from o
to the root. In that case ν1.` ≥ H and ν2.` ≥ H .

Hence, ν1.` ∼β
′
ν2.`. Therefore, ν1 ∼β

′
ν2 from

Definition 4.
Thus, Σ′1 ∼β

′
Σ′2 by Definition 5.

3) Preemption-point: For any new objects a and b that
are created, β′ = β ∪ (a, b). Thus, θ′1 ∼β

′
θ′2 by

Lemma 5. Σ′1 := Σ1[!Σ1.C := C ′1, !Σ1.M := S] and
Σ′2 := Σ[!Σ2.C := C ′2, !Σ1.M := S]. Since C ′1 ∼β

′
C ′2

(Lemma 5), Σ′1 ∼β
′

Σ′2.
4) End: β′ = β. θ′1 ∼β

′
θ′2 by Lemma 5. Σ′1 :=

Σ1[!Σ1.C := φ, !Σ1.M := S] and Σ′2 := Σ[!Σ2.C :=
φ, !Σ1.M := S]. Thus, Σ′1 ∼β

′
Σ′2.

5) Fire Event: β′ = β. θ′1 = θ1 ∼β
′
θ2 = θ′2. The event

and node objects, e1, e2 and o1, o2 are under partial
bijection β, i.e., (e1, e2) ∈ β and (o1, o2) ∈ β. Let



the new frames pushed on top of Σ1 and Σ2 be ν1

and ν2, respectively. ν1.C = ν2.C = φ , ν1.E =
(σ(!Σ1.C)).arg [1] ∼β′ (σ(!Σ1.C)).arg [1] = ν2.E,
ν1.N = (σ(!Σ1.C)).arg [0] ∼β′ (σ(!Σ1.C)).arg [0] =
ν2.N , ν1(aL) = getAncestors(ν1.N, θ1) ∼β′

getAncestors(ν2.N, θ2) = ν2(aL), ν1(N ) = ν2(N ) =
[], ν1.N = ν2.N = [], ν1.H = ν2.H = [] and
ν1.P = ν2.P = S. For ν1.` and ν2.` the following
cases arise from the heap-equivalence definition:
• The path from o to root consists of only L pointers

(pointer label corresponds to the Γ(parentLabel)) in
both cases. In that case ν1.` = ν2.` = L.

• There is at least one H pointer in the path from o to
the root. In that case ν1.` ≥ H and ν2.` ≥ H .

Hence, ν1.` ∼β
′
ν2.`. Therefore, ν1 ∼β

′
ν2 from

Definition 4. Thus, Σ′1 ∼β
′

Σ′2 by Definition 5.
6) Start-to-Capture: β′ = β. θ′1 = θ1 ∼β

′
θ2 = θ′2.

As !Σ1.aL ∼β
′
!Σ2.aL, nl1 ∼β

′
nl2 (Definition 2).

Both Σ1 and Σ2 get updated in the equivalent way:
Σ′1 := Σ1[!Σ1.N := nl1, !Σ1.P := C] and Σ′2 :=
Σ2[!Σ2.N := nl2, !Σ2.P := C]. So, Σ′1 ∼β

′
Σ′2.

7) Capture-to-Target: β′ = β. θ′1 = θ1 ∼β
′
θ2 = θ′2.

For the two runs on nodes N1 and N2, nl1 = [N1]
and nl2 = [N2]. We know N1 ∼β

′
N2, since Σ1 ∼β

′

Σ2 and !Σ1.` =!Σ2.` = L, hence nl1 ∼β
′
nl2.

Both Σ1 and Σ2 get updated in the following way:
Σ′1 := Σ1[!Σ1.N := nl1, !Σ1.P := T ] and Σ′2 :=
Σ2[!Σ2.N := nl2, !Σ2.P := T ]. So, Σ′1 ∼β

′
Σ′2.

8) Target-to-Bubble: β′ = β. θ′1 = θ1 ∼β
′
θ2 = θ′2.

As !Σ1.aL ∼β
′
!Σ2.aL, (nl1 :=!Σ1.N ) ∼β′ (nl2 :=

!Σ2.N ) (Definition 2). Both Σ1 and Σ2 get updated in
the equivalent way: Σ′1 := Σ1[!Σ1.N := nl1, !Σ1.P :=
B] and Σ′2 := Σ2[!Σ2.N := nl2, !Σ2.P := B]. So,
Σ′1 ∼β

′
Σ′2.

9) Bubble-to-Default: β′ = β. θ′1 = θ1 ∼β
′
θ2 = θ′2.

As !Σ1.aL ∼β
′
!Σ2.aL, nl1 ∼β

′
nl2 (Definition 2).

Both Σ1 and Σ2 get updated in the equivalent way:
Σ′1 := Σ1[!Σ1.N := nl1, !Σ1.P := D] and Σ′2 :=
Σ2[!Σ2.N := nl2, !Σ2.P := D]. So, Σ′1 ∼β

′
Σ′2.

10) Default Prevented: β′ = β. Only thing that changes is
the phase !Σ′1.P =Σ′2.P = D.

11) Remove Frame: β′ = β. θ′1 = θ1 ∼β
′
θ2 = θ′2. Since

Σ1 ∼β
′

Σ2 and !Σ1(`) =!Σ2(`) = L, after popping
also we will have Σ′1 ∼β

′
Σ′2 by Definition 5.

12) Get Event Handlers: β′ = β. θ′1 = θ1 ∼β
′
θ2 = θ′2.

Since N1 ∼β
′ N2, therefore Σ′1.N ∼β

′
Σ′2.N by Defi-

nition 2. From Definition 2 either Γ(n1) = Γ(n2) = L
and n1 = n2 or Γ(n1) ≥ H ∧ Γ(n2) ≥ H , in either
case Σ′1.H ∼β

′
Σ′2.H by Definition 3.

13) Run Event Handlers: β′ = β. θ′1 = θ1 ∼β
′
θ2 = θ′2.

Since its a L transition and !Σ1.H ∼β
′
!Σ2.H, either

Γ(fm1) = Γ(fm2) = L ∧ fm1 = fm2 or Γ(fm1) =
Γ(fm2) = H . Hence, C1 ∼β

′
C2. Also, !Σ′1.M =

!Σ′2.M = R and !Σ′1.H ∼β
′
!Σ′2.H. Thus, Σ′1 ∼β

′
Σ′2.

14) Stop Propagation and Stop Immediate Propagation:
Trivial.

15) Run Suspended Machine: β′ = β. θ′1 = θ1 ∼β
′
θ2 =

θ′2. Also, !Σ′1.M =!Σ′2.M = R. Thus, Σ′1 ∼β
′

Σ′2.

Theorem 1. ∀κ1, κ2.κ1 ∼β κ2 =⇒ κ1Rκ2

Proof: Given κ1 ∼β κ2. We need to prove all the
clauses in the definition of R.

1) Given
2) From Lemma 1
3) From Lemma 1
4) From Lemma 2
5) From Lemma 2
6) From Lemma 3

Theorem 2. Termination-insensitive non-interference
If κ1 ∼β κ2, κ1 �α κ

′
1 and κ2 �α κ

′
2, then either:

• κ′1 ∼β κ′2 or
• κ′1 ∼β κ2 or
• κ1 ∼β κ′2

Proof: Follows immediately from Theorem 1.



B. Formal Model for IFC in JS with DOM calls

We use the formal model from [15] and extend it to reason about the DOM API. In particular, we modify their opCall
case to reason about the native and DOM calls in various lemmas. We lift the other cases of the proofs as is from their
model. Below we present the complete model from [15], along with the changes to their proofs and the model.

struct SourceCode{
String programSrc;
bool strictMode;

};

typedef char* Opcode;

union Operand{
int immediateValue;
String identifier;
int registerIndex;
int funcIndex;
bool flag;
int offset;

};

struct Instruction{
Opcode opc;
Operand* opr;

};

struct CFGNode{
Instruction* inst;
struct CFGNode* left;
struct CFGNode* right;
struct CFGNode* succ;

};

struct CFG{
struct CFGNode* cfgNode;
JSGlobalObject* globalObject;
int numVars;
int numFns;
bool strictMode;

};

struct JSLabel{
uint64_t label;

};

enum Specials{
NaN, undefined

};

union ValueType{
bool b;
int n;
String s;
double d;
JSObject* o;

};

union valueTemplate{
Specials s;
ValueType v;

};

struct JSValue{
valueTemplate data;
JSLabel label;

};

struct PropertyDescriptor{
JSValue value;
bool writable;
bool enumerable;
bool configurable;
JSLabel structLabel;

};

struct Property{
String propertyName;
PropertyDescriptor* pDesc;

};

struct PropertySlot{
Property prop;
PropertySlot* next;

};

struct JSObject{
Property property[MAX_PROPS];
struct proto{

JSLabel l;
JSObject* __proto__;

} prototype;
JSLabel structLabel;

};

struct Heap{
unsigned location;
JSObject o;

}[HEAP_SIZE];

enum FunctionType{
JSFunction, HostFunction

};

struct JSFunctionObject:
JSObject{
CFG* funcCFG;
ScopeChainNode* scopeChain;
FunctionType fType;

};

struct JSGlobalObject:
JSObject{
JSFunctionObject evalFunction;
JSObject* objectPrototype;
JSObject* functionPrototype;

};

struct Register{
JSValue value;

};

struct CallFrameNode{
Register rf[REGISTER_FILE_SIZE];
CFG cfg;
CFGNode* returnAddress;
ScopeChainNode* sc;
JSFunctionObject* callee;
JSLabel calleeLabel;
int argCount;
bool getter;
int dReg;

};

struct CallFrameStack{
CallFrameNode cFN;
CallFrameStack* previous;

};

struct PCNode{
JSLabel l;
CFGNode* ipd;
CallFrameNode* cFN;
bool handler;

};

struct PCStack{
PCNode node;
PCStack* previous;

};

struct JSActivation{
CallFrameNode* callFrameNode;
JSLabel structLabel;

};

enum ScopeChainObjectType{
LexicalObject, VariableObject

};

union SChainObject{
JSObject* obj;
JSActivation* actObj;

};

struct ScopeChainNode{
SChainObject Object;
ScopeChainObjectType scObjType;
ScopeChainNode* next;
JSLabel scopeLabel;

};

Figure 6: Data Structures

1) Algorithms: The different meta-functions used in the semantics presented in Section VIII-B2 are described below:
procedure isInstanceOf (JSLabel context, JSValue obj, JSValue protoVal)

oProto := obj.prototype.__proto__
while oProto do

if oProto = protoVal then
ret := JSValue::construct(true)
ret.label := context
return ret

end if
oProto := oProto.prototype.__proto__
context := context.Join(oProto.prototype.l)

end while
ret := JSValue::construct(false)



ret.label := context
return ret

end procedure

procedure opRet(CallFrameStack* callStack, int ret)
JSValue retValue = callStack.cFN.rf[ret].value
if hostCallFrameFlag then

callStack.pop()
return nil, callStack, retValue

end if
callStack.pop()
return callStack.cFN.returnAddress, callStack, retValue

end procedure

procedure opCall(CallFrameStack* callStack, CFGNode* ip, int func, int argCount)
JSValue funcValue := callStack.cFN.rf[func].value
JSFunctionObject fObj
CallFrameNode *sigmaTop := new CallFrameNode()
CallFrameNode *prevTop := callStack.top()
callStack.push(sigmaTop)
CallType callType := getCallData(funcValue, &fObj)
if callType = CallTypeJS then

ScopeChainNode* sc := fObj.scopeChain
callStack.cFN.cfg := fObj.funcCFG
callStack.cFN.returnAddress := ip.Succ
callStack.cFN.sc := sc
callStack.cFN.argCount := argCount
for i ← 0, argCount do

callStack.cFN.rf[sigmaTop.baseRegister() + i].value :=
prevTop.rf[prevTop.headRegister()-i].value

end for
ip := callStack.cFN.cfg.cfgNode

else if callType = CallTypeHost then
ScopeChainNode* sc := fObj.scopeChain
callStack.cFN.cfg := fObj.funcCFG
callStack.cFN.returnAddress := ip.Succ
callStack.cFN.sc := sc
callStack.cFN.argCount := argCount
functionReturnValue = invokeNativeMethod(callStack)

end if
retState.ip := ip
retState.sigma := callStack
return retState

end procedure

procedure opCallEval(JSLabel contextLabel, CallFrameStack* callStack, CFGNode* ip, int func, int argCount)
JSValue funcValue := callStack.cFN.rf[func].value
JSFunctionObject* fObj
JSObject* variableObject
Argument* arguments
if isHostEval(funcValue) then

ScopeChainNode* sc := fObj.scopeChain
callStack.cFN.returnAddress := ip + 1
callStack.cFN.sc := sc
callStack.cFN.argCount := argCount
SourceCode progSrc := funcValue.getSource()
Compiler::preparse(progSrc)
CFG* evalCodeBlock := Compiler::compile(progSrc)
unsigned numVars := evalCodeBlock.numVariables()
unsigned numFuncs := evalCodeBlock.numFuncDecls()
if numVars || numFuncs then

if evalCodeBlock.strictMode then
JSActivation* variableObject := new JSActivation()
variableObject.create(callStack)
SChainObject* scObj
scObj.actObj := variableObject
sc.push(scObj, variableObject, contextLabel)

else
for (ScopeChainNode* n := sc;; n := n.next) do

if n.isVariableObject() && !n.isLexicalObject() then
variableObject := n.getObject()
break

end if
end for

end if
for i ← 0, numVars do

Identifier iden := evalCodeBlock.variable(i)



if !variableObject.hasProperty(iden) then
variableObject.insertVariable(iden)

end if
end for
for i ← 0, numFuncs do

JSFunctionObject* fObj := evalCodeBlock.funcDecl(i)
variableObject.insertFunction(fObj)

end for
end if
callStack.cFN.cfg := evalCodeBlock
ip := evalCodeBlock.cfgNode
retState.ip := ip
retState.sigma := callStack
return retState

else
return opCall(contextLabel, callStack, ip, func, argCount)

end if
end procedure

procedure createArguments(Heap* h, CallFrameStack* callStack)
JSObject* jsArgument := JSArgument::create(h, callStack)
h.o[++(h.location)] := *jsArgument
retState.theta := h
retState.val := JSValue::construct(jsArgument)
return retState

end procedure

procedure newFunc(CallFrameStack* callStack, Heap* heap, int funcIndex, JSLabel context)
CFG* cBlock := callStack.cFN.cfg
SourceCode fcCode := cBlock.getFunctionSrc(funcIndex)
CFG* fcBlock := Compiler::compile(fcCode,callStack.cFN)
JSFunctionObject* fObj := JSFunctionObject::create( fcBlock,callStack.cFN.sc)
fObj.structLabel := context
heap.o[++(heap.location)] := *fObj
retState.theta := heap
retState.val := JSValue::construct(fObj)
return retState

end procedure

procedure createActivation(CallFrameStack* callStack, JSLabel contextLabel)
JSActivation* jsActivation := new JSActivation()
jsActivation.create(callStack)
jsActivation.structLabel := contextLabel
SChainObject* scObj
scObj.actObj := jsActivation
JSValue vActivation := JSValue::jsValuefromActivation (jsActivation)
if callStack.cFN.scopeLabel ≥ contextLabel then

callStack.cFN.sc.push(scObj, VariableObject, contextLabel)
callStack.cFN.scopeLabel := contextLabel

else
stop

end if
return retState

end procedure

procedure createThis(JSLabel contextLabel, CallFrameStack* callStack, Heap* h)
JSFunctionObject* callee := callStack.cFN.callee
PropertySlot p(callee)
String str := "prototype"
JSValue proto := p.getValue(str)
JSObject* obj := new JSObject()
obj.structLabel := contextLabel
obj.prototype.__proto__ := proto.toObject()
obj.prototype.l := proto.toObject().structLabel.join( contextLabel)
h.o[++(h.location)] := *obj
retState.theta := h
retState.val := JSValue::construct(obj)
return retState

end procedure

procedure newObject(Heap* h, JSLabel contextLabel)
JSObject* obj := emptyObject()
obj.structLabel := contextLabel
obj.prototype.__proto__ := ObjectPrototype::create()
obj.prototype.l := contextLabel



h.o[++(h.location)] := *obj
retState.theta := h
retState.val := JSValue::construct(obj)
return retState

end procedure

procedure getPropertyById(JSValue v, String p, int dst)
JSObject* O := v.toObject()
JSLabel label := O.structLabel
JSValue ret := jsUndefined()
if O.isUndefined() then

ret.label := label
return ret

end if
while O 6= null do

if O.containsProperty(p) then
if p.isGetter() then

JSValue v = p.getValue()
JSFunctionObject* funcObj = (JSFunctionObject*) v.toObject()
CallFrameNode *sigmaTop = new CallFrameNode()
callStack.push(sigmaTop)
ScopeChainNode* sc = fObj.scopeChain
CFG* newCodeBlock = fObj.funcCFG
callStack.cFN.cfg = *newCodeBlock
callStack.cFN.returnAddress = ip + 1
callStack.cFN.sc = sc
callStack.cFN.getter = true
callStack.cFN.dReg = dst
ip = newCodeBlock.cfgNode
interpreter.iota = ip
interpreter.sigma = callStack

else
ret := getProperty(p).getValue()
ret.label := label

end if
return ret

else
O := O.prototype.__proto__

end if
label := label.join(label)

end while
end procedure

procedure putDirect(JSLabel contextLabel, CallFrameStack* callStack, Heap* h, int base, String property, int propVal)
JSValue baseValue := callStack.cFN.rf[base]. value
JSValue propValue := callStack.cFN.rf[propVal]. value
JSObject* obj := baseValue.toObject()
PropertyDescriptor dataPD := PropertyDescriptor::createPD(true, true, true)
dataPD.value := propValue
obj.setProperty(property, dataPD)
obj.structLabel := obj.structLabel.join(contextLabel)
h.o[++(h.location)] := *obj
return h

end procedure

procedure putIndirect(JSLabel contextLabel, CallFrameStack* callStack, Heap* h, int base, String property, int val)
JSValue baseValue := callStack.cFN.rf[base].value
JSValue propValue := callStack.cFN.rf[val].value
JSObject* obj := baseValue.toObject()
bool isStrict := callStack.cFN.cfg.isStrictMode()
contextLabel := obj.structLabel.join(contextLabel)
if obj.containsPropertyInItself(property) && obj. getProperty(property).isDataProperty() && !isStrict && obj.isWritable() then

obj.getProperty(property).setValue(propValue)
h.o[++(h.location)] := *obj
return h

end if
return putDirect(contextLabel, callStack, h, base, property, val)

end procedure

procedure delById(JSLabel contextLabel, CallFrameStack* callStack, Heap* h, int base, Identifier property)
JSValue baseValue := callStack.cFN.rf[base].value
JSObject* obj := baseValue.toObject()
int loc := h.findObject(obj)
Property prop := obj.getProperty(property)
PropertyDescriptor pd := prop.getPropertyDescriptor()
if obj.getPropertyValue(prop).label ≥ contextLabel then



if !obj.containsPropertyInItself(property) then
retState.theta := h
retState.val := JSValue::construct(true)
return retState

end if
if obj.containsPropertyInItself(property) && prop. isConfigurable() then

if !(callStack.cFN.cfg.isStrictMode()) then
pd.value := JSValue::constructUndefined()
obj.setProperty(property, pd)
h.o[loc] := *obj
retState.theta := h
retState.val := JSValue::construct(true)
return retState

end if
end if
retState.theta := h
retState.val := JSValue::construct(false)
return retState

else
stop

end if
end procedure

procedure putGetterSetter(JSLabel contextLabel, CallFrameStack* callStack, Heap* h, int base, Identifier property, JSValue getterValue, JSValue setterValue)
JSValue baseValue := callStack.cFN.rf[base].value
JSObject* obj := baseValue.toObject()
int loc := h.findObject(obj)
JSFunctionObject *getterObj, *setterObj
JSFunctionObject *getterFuncObj := null, *setterFuncObj := null
if !getterValue.isUndefined() then

getterFuncObj := getterValue.toFunctionObject (callStack.cFN.cfg, callStack.cFN.sc)
end if
if !setterValue.isUndefined() then

setterFuncObj := setterValue.toFunctionObject (callStack.cFN.cfg, callStack.cFN.sc)
end if
if getterFuncObj 6= null then

obj.setGetter(property, getterObj)
end if
if setterFuncObj 6= null then

obj.setSetter(setterObj)
end if
PropertyDescriptor accessor := PropertyDescriptor ::createPD(false, false, false, true)
JSValue v := JSValue::constructUndefined()
v.label := contextLabel
accessor.value := v
obj.setProperty(property, accessor)
obj.structLabel := contextLabel
h.o[loc] := *obj
return h

end procedure

procedure getPropNames(CallFrameStack* callStack, Instruction* ip, int base, int i, int size, int breakOffset)
JSValue baseVal := callStack.cFN.rf[base].value
JSObject* obj := baseVal.toObject()
PropertyIterator* propItr := obj.getProperties()
if baseVal.isUndefined() || baseVal.isNull() then

retState.v1 := jsUndefined()
retState.v2 := jsUndefined()
retState.v3 := jsUndefined()
retState.ip := ip + breakOffset
return retState

end if
retState.v1 := JSValue::construct(propItr)
retState.v2 := JSValue::construct(0)
retState.v3 := JSValue::construct(propItr.size())
retState.ip := ip + 1
return retState

end procedure

procedure getNextPropName(CallFrameStack* cStack, Instruction* ip, JSValue base, int i, int size, int iter, int offset, int dst)
JSObject* obj := base.toObject()
PropertyIterator* propItr := cStack.cFN.rf[iter].value. toPropertyIterator()
int b := rFile[i].value.toInteger()
int e := rFile[size].value.toInteger()
while b < e do

String key := propItr.get(b)
retState.value1 := JSValue::construct(b + 1)



if !(key.isNull()) then
retState.value2 := JSValue::construct(key)
ip := ip + offset
break

end if
b++

end while
return retState

end procedure

procedure resolveInSc(JSLabel contextLabel, ScopeChainNode* scopeHead, String property)
JSValue v
JSLabel l
ScopeChainNode* scn := scopeHead
while scn 6= NULL do

PropertySlot pSlot := scn.getPropertySlot()
if pSlot.contains(property) then

v := pSlot.getValue(property)
v.label := contextLabel
return v

end if
scn := scn.next
if scn.scObjType = VariableObject then

contextLabel = contextLabel.join(scn.Object. actObj.structLabel)
else if scn.scObjType = LexicalObject then

contextLabel = contextLabel.join(scn.Object. obj.structLabel)
end if
contextLabel := contextLabel.join(scn. scopeNextLabel)

end while
v := jsUndefined()
v.label := contextLabel
return v

end procedure

procedure resolveInScWithSkip(JSLabel contextLabel, ScopeChainNode* scopeHead, String property, int skip)
JSValue v
JSLabel l
ScopeChainNode* scn := scopeHead
while skip−− do

scn := scn.next
if scn.scObjType = VariableObject then

contextLabel := contextLabel.join( scn.Object. actObj.structLabel)
else if scn.scObjType = LexicalObject then

contextLabel := contextLabel.join(scn.Object. obj.structLabel)
end if
contextLabel := contextLabel.join(scn. scopeNextLabel)

end while
while scn 6= null do

PropertySlot pSlot := scn.getPropertySlot()
if pSlot.contains(property) then

v := pSlot.getValue(property)
v.label := contextLabel
return v

end if
scn := scn.next
if scn.scObjType = VariableObject then

contextLabel := contextLabel.join(scn.Object. actObj.structLabel)
else if scn.scObjType = LexicalObject then

contextLabel := contextLabel.join(scn.Object. obj.structLabel)
end if
contextLabel := contextLabel.join(scn. scopeNextLabel)

end while
v := jsUndefined()
v.label := contextLabel
return v

end procedure

procedure resolveGlobal(JSLabel contextLabel, CallFrameStack* cStack, String property)
JSValue v
struct CFG* cBlock := cStack.cFN.cfg
JSGlobalObject* globalObject := cBlock. getGlobalObject()
PropertySlot pSlot(globalObject)
if pSlot.contains(property) then

v := pSlot.getValue(property)
v.label := contextLabel
return v

end if



v := jsUndefined()
v.label := contextLabel
return v

end procedure

procedure resolveBase(JSLabel contextLabel, CallFrameStack* cStack, ScopeChainNode* scopeHead, String property, bool strict)
JSValue v
ScopeChainNode* scn := scopeHead
CFG *cBlock := cStack.cFN.cfg
JSGlobalObject *gObject := cBlock.globalObject
while scn 6= null do

JSObject* obj := scn.get()
contextLabel := obj.structLabel.join(contextLabel)
PropertySlot pSlot(obj)
if scn.next = null && strict && !pSlot.contains (property) then

v := emptyJSValue()
v.label := contextLabel
return v

end if
if pSlot.contains(property) then

v := JSValueContainingObject(obj)
v.label := contextLabel
return v

end if
scn := scn.next
if scn 6= null then

contextLabel := contextLabel.join(scn. scopeNextLabel)
end if

end while
v := JSValue::construct(gObject)
v.label := contextLabel
return v

end procedure

procedure resolveBaseAndProperty(JSLabel contextLabel, CallFrameStack cStack, int bRegister, int pRegister, String property)
JSValue v
ScopeChainNode* scn := cStack.cFN.sc
while scn 6= null do

JSObject* obj := scn.get()
contextLabel := obj.structLabel.join(contextLabel)
PropertySlot pSlot(obj)
if pSlot.contains(property) then

v := pSlot.getValue(property)
v.label := contextLabel
ret.val1 := v
v := JSValueContainingObject(obj)
v.label := contextLabel
ret.val2 := v
return ret

end if
scn := scn.next
if scn 6= null then

contextLabel := contextLabel.join(scn. scopeNextLabel)
end if

end while
end procedure

procedure getScopedVar(JSLabel contextLabel, CallFrameStack* callStack, Heap* h, int index, int skip)
JSValue v
ScopeChainNode* scn := callStack.cFN.sc
while skip−− do

if scn.scObjType = VariableObject then
contextLabel := contextLabel.join(scn.Object.actObj. structLabel)

else if scn.scObjType = LexicalObject then
contextLabel := contextLabel.join(scn.Object.obj. structLabel)

end if
contextLabel := contextLabel.join(scn. scopeLabel)
scn := scn.next

end while
v := scn.registerAt(index)
if scn.scObjType = VariableObject then

v.label := contextLabel.join(scn.Object.actObj. structLabel)
else if scn.scObjType = LexicalObject then

v.label := contextLabel.join(scn.Object.obj. structLabel)
end if
return v

end procedure



procedure putScopedVar(JSLabel contextLabel, CallFrameStack* callStack, Heap* h, int index, int skip, int value)
CallFrameStack* cStack
ScopeChainNode* scn := callStack.cFN.sc
JSValue val := callStack.cFN.rf[value].value
while skip−− do

if scn.scObjType = VariableObject then
contextLabel := contextLabel.join(scn.Object. actObj.structLabel)

else if scn.scObjType = LexicalObject then
contextLabel := contextLabel.join(scn.Object. obj.structLabel)

end if
contextLabel := contextLabel.join(scn. scopeLabel)
scn := scn.next

end while
cStack := scn.setRegisterAt(contextLabel, index, val)
return cStack

end procedure

procedure pushScope(JSLabel contextLabel, CallFrameStack* callStack, Heap* h, int scope)
ScopeChainNode* sc := callStack.cFN.sc
JSValue v := callStack.cFN.rf[scope].value
JSObject* o := v.toObject()
SChainObject* scObj
if sc.scopeLabel ≥ contextLabel then

scObj.obj := o
sc.push(scObj, LexicalObject, contextLabel)
callStack.cFN.sc := sc

else if sc.scopeLabel = star then
scObj.obj := o
sc.push(scObj, LexicalObject, star)
callStack.cFN.sc := sc

end if
return callStack

end procedure

procedure popScope(JSLabel contextLabel, CallFrameStack* callStack, Heap* h)
ScopeChainNode* sc := callStack.cFN.sc
JSLabel l := sc.scopeLabel
if l ≥ contextLabel then

sc.pop()
callStack.cFN.sc := sc

else
stop

end if
return callStack

end procedure

procedure jmpScope(JSLabel contextLabel, CallFrameStack* callStack, Heap* h, int count)
ScopeChainNode* sc := callStack.cFN.sc
while count−− > 0 do

JSLabel l := sc.scopeLabel
if l ≥ contextLabel then

sc.pop()
callStack.cFN.sc := sc

else
stop

end if
end while
return callStack

end procedure

procedure throwException(CallFrameStack* callStack, CFGNode* iota)
CFGNode* handler
while callStack.cFN.hasHandler()==false do

callStack.pop()
end while
while callStack.cFN.sc.length() - callStack.cFN.getHandlerScopeDepth() do

callStack.cFN.sc.pop()
end while
handler := callStack.cFN.getHandler(iota)
interpreter.iota := handler
interpreter.sigma := callStack

end procedure



2) Semantics:

prim:

ι = “prim dst:r src1:r src2:r”
L := Γ(!σ(src1)) t Γ(!σ(src2)) t Γ(!ρ) V := Υ(!σ(src1))⊕Υ(!σ(src2))

(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

prim reads the values from two registers (src1 and src2), performs the binary operation generically denoted by ⊕, and writes
the result into the dst register. The label assigned to the value in dst register is the join of the label of value in src1, src2
and the head of the pc-stack (!ρ). In order to avoid implicit leak of information, the label of the existing value in dst is
compared with the current context label. If the label is lower than the context label, the label of the value in dst is set to ?.

mov:

ι = “mov dst:r src:r”
L := Γ(!σ(src)) t Γ(!ρ) V = Υ(!σ(src))
(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

mov copies the value from the src register to the dst register. The label assigned to the value in dst register is the join of
the label of value in src and the head of the pc-stack (!ρ). In order to avoid implicit leak of information, the label of the
existing value in dst is compared with the current context label. If the label is lower than the context label, the label of the
value in dst is joined with ?.

jfalse:

ι = “jfalse cond:r target:offset”
Γ(!σ(cond)) 6= ? ρ′′ := ρ.push(Γ(!σ(cond)) t Γ(!ρ), IPD(ι),CF(ι), false)

Υ(!σ(cond)) = false ⇒ ι′ := Left(!σ.CFG, ι) � ι′ := Right(!σ.CFG, ι)
ρ′ := isIPD(ι′, ρ′′, σ)

θ, ι, σ, ρ → θ, ι′, σ, ρ′

jfalse is a branching instruction. Based on the value in the cond register, it decides which branch to take. The operation
is performed only if the value in cond is not labelled with a ?. If it contains a ?, we terminate the execution to prevent
possible leak of information. The push function defined in the rule does the following: A node is pushed on the top of the
pc-stack containing the IPD of the branching instruction and the label of the value in cond joined with the context, to define
the context of this branch. If the IPD of the instruction is SEN or the same as the top of the pc-stack, then we just join the
label on top of the pc-stack with the context label determined by the cond register.

loop-if-less:

ι = “loop-if-less src1:r src2:r target:offset”
Γ(!σ(src1)) 6= ? Γ(!σ(src2)) 6= ? L := Γ(!σ(src1)) t Γ(!σ(src2)) t Γ(!ρ)
Υ(!σ(src1)) < Υ(!σ(src2))⇒ ι′ := Left(!σ.CFG, ι) � ι′ := Right(!σ.CFG, ι)

ρ′′ := ρ.push(L, IPD(ι),CF(ι), false) ρ′ := isIPD(ι′, ρ′′, σ)

θ, ι, σ, ρ → θ, ι′, σ, ρ′

loop-if-less is another branching instruction. If the value of src1 is less than src2, then it jumps to the target, else continues
with the next instruction. The operation is performed only if the values in src1 and src2 are not labelled with a ?. If any
one of them contains a ?, we abort the execution to prevent possible leak of information. The push function defined in the
rule does the following: A node is pushed on the top of the pc-stack containing the IPD of the branching instruction and
the join of the label of the values in src1 and src2 joined with the context, to define the context of this branch. If the IPD
of the instruction is SEN or the same as the top of the pc-stack, then we just join the label on top of the pc-stack with the
context label determined above.

typeof:

ι = “typeof dst:r src:r”
L := (Γ(src) t Γ(!ρ)) V := determineType(!σ(src))

(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

typeof determines the type string for src according to ECMAScript rules, and puts the result in register dst . We do a deferred
NSU check on dst before writing the result in it. The determineType function returns the data type of the value passed as
the parameter.

instanceof:

ι = “instanceof dst:r value:r cProt:r”
v := isInstanceOf (Γ(!ρ), !σ(value), cProt) L = Γ(v) V = Υ(v),

(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?),

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′



instanceof tests whether the cProt is in the prototype chain of the object in register value and puts the Boolean result in the
dst register after deferred NSU check.

enter:
ι = “enter” ι′ := Succ(!σ.CFG, ι) ρ′ := isIPD(ι′, ρ, σ)

θ, ι, σ, ρ → θ, ι′, σ, ρ′

enter marks the beginning of a code block.

ret:
ι = “ret res:r” (ι′, σ′, γ) := opRet(σ, res) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

ret is the last instruction to be executed in a function. It pops the call-frame and returns the control to the callee’s call-frame.
The return value of the function is written to a local variable in the interpreter (γ), which can be read by the next instruction
being executed.

end:
ι = “end res:r” opEnd(σ, res)

θ, ι, σ, ρ → −

end marks the end of a program. opEnd passes the value present in res register to the caller (the native function that invoked
the interpreter).

call:

ι = “op-call func:r args:n”
Γ(func) 6= ? (ι′, σ′,H, `f ) := opCall(σ, ι, func, args)

ρ′′ := ρ.push(`f t Γ(!σ(func)) t Γ(!ρ), IPD(ι),CF(ι),H) ρ′ := isIPD(ι′, ρ′′, σ′)

θ, ι, σ, ρ → ι′, θ, σ′, ρ′

call, initially, checks the function object’s label for ? and if the label contains a ?, the program execution is aborted. The
reason for termination is the possible leak of information as explained above. If not, call creates a new call-frame, copies
the arguments, initializes the registers, scope-chain pointer, codeblock and the return address. The registers are initialized
to undefined and assigned a label obtained by joining the label of the context in which the function was created and the
label of the function object itself. We treat call as a branching instruction and hence, push a new node on the top of the
pc-stack with the label determined above along with its IPD and call-frame. The field H in the push function is determined
by looking up the exception table. If it contains an associated exception handler, it sets the field to true else it is set to
false . If the IPD is the SEN then we just join the label on the top of the stack with the currently calculated label. It then
points the instruction pointer to the first instruction of the new code block.

call-put-result:

ι = “call-put-result res:r”
L := Γ(γ) t Γ(!ρ) V := Υ(γ)

(Γ(!σ(res)) ≥ Γ(!ρ))⇒ L := L � L := ?

σ′ := σ
[

Υ(!σ(res)):=V
Γ(!σ(res)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

call-put-result copies the return value γ to the res register. The label assigned to the value in res register is the join of the label
of the return value and the head of the pc-stack. In order to avoid implicit leak of information, deferred no-sensitive-upgrade
is performed.

call-eval:

ι = “call-eval func:r args:n”
Γ(!σ(func)) 6= ? (ι′, σ′,H, `f ) := opCallEval(Γ(!ρ), σ, ι, func, args)

ρ′′ := ρ.push(`f t Γ(!σ(func)) t Γ(!ρ), IPD(ι),CF(ι),H) ρ′ := isIPD(ι′, ρ′′, σ′)

θ, ι, σ, ρ → ι′, θ, σ′, ρ′

call-eval calls a function with the string passed as an argument converted to a code block. If func register contains the
original global eval function, then it is performed in local scope, else it is similar to call.

create-arguments:

ι = “create-arguments dst:r”
(θ′, v) := createArguments(θ, σ) L := Γ(!ρ) V := Υ(v)

(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ L := L � L := ?

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′′, σ′, ρ′

create-arguments creates the arguments object and places its pointer in the local dst register after the deferred NSU check.
The label of the arguments object is set to the context.



new-func:

ι = “new-func dst:r funcIndex:f”
(θ′, v) := newFunc(σ, θ, funcIndex ,Γ(!ρ)) L := Γ(v) t Γ(!ρ) V := Υ(v)

(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ L := L � L := ?

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′′, σ′, ρ′

new-func constructs a new function instance from function at funcIndex and the current scope chain and puts the result in
dst after deferred NSU check.

create-activation:

ι = “create-activation dst:r”
(σ′, v) := createActivation(σ,Γ(!ρ)) L := Γ(v) t Γ(!ρ) V := Υ(v)

(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ L := L � L := ?

σ′ := σ
[

Υ(!σ′′(dst)):=V
Γ(!σ′′(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

create-activation creates the activation object for the current call-frame if it has not been already created and writes it to
the dst after the deferred NSU check and pushes the object in the scope-chain. If the label of the head of the existing
scope-chain is less than the context, then the label of the pushed node is set to ?, else it is set to the context.

construct:

ι = “construct func:r args:n”
Γ(!σ(func)) 6= ? (ι′, σ′,H, `f ) := opCall(σ, ι, func, args)

ρ′′ := ρ.push(`f t Γ(!σ′(func)) t Γ(!ρ), IPD(ι),CF(ι),H) ρ′ := isIPD(ι′, ρ′′, σ′)

θ, ι, σ, ρ → ι′, θ, σ′, ρ′

construct invokes register func as a constructor and is similar to call. For JavaScript functions, the this object being passed
(the first argument in the list of arguments) is a new object. For host constructors, no this is passed.

create-this:

ι = “create-this dst:r”
(θ′, v) := createThis(Γ(!ρ), σ, θ) L := Γ(v) t Γ(!ρ) V := Υ(v)

(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ L := L � L := ?

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′′, σ′, ρ′

create-this creates and allocates an object as this used for construction later in the function. The object is labelled the context
and placed in dst after deferred NSU check. The prototype chain pointer is also labelled with the context label.

new-object:

ι = “new-object dst:r”
(θ′, v) := newObject(θ,Γ(!ρ)) L := Γ(v) t Γ(!ρ) V := Υ(v)

(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′′, σ′, ρ′

new-object constructs a new empty object instance and puts it in dst after deferred NSU check. The object is labelled with
the context label and the prototype chain pointer is also labelled with the context.

get-by-id:

ι = “get-by-id dst:r base:r prop:id vdst:r”
v := getPropertyById(!σ(base), prop, vdst) L := Γ(v) t Γ(!ρ) V := Υ(v)

(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

get-by-id gets the property named by the identifier prop from the object in the base register and puts it into the dst register
after the deferred NSU check. If the object does not contain the property, it looks up the prototype chain to determine if
any of the proto objects contain the property. When traversing the prototype chain, the context is joined with the structure
label of all the objects and the prototype chain pointer labels until the property is found or the end of the chain. It then
joins the property label to the context. If the property is not found, it returns undefined. The joined label of the context is
the label of the property put in the dst register.

If the property is an accessor property, it calls the getter function, sets the getter flag in the call-frame and updates the
destination register field with the register where the value is to be inserted. It then transfers the control to the first instruction
in the getter function.



put-by-id:

ι = “put-by-id base:r prop:id value:r direct:b”
Γ(!σ(value)) 6= ?

(direct = true ⇒ θ′ := putDirect(Γ(!ρ), σ, θ, base, prop, value) �
θ′ := putIndirect(Γ(!ρ), σ, θ, base, prop, value))
ι′ := Succ(!σ.CFG, ι) ρ′ := isIPD(ι′, ρ, σ)

θ, ι, σ, ρ → θ, ι′′, σ, ρ′

put-by-id writes into the heap the property of an object. We check for ? in the label of value register. If it contains a ?, the
program aborts as this could potentially result in an implicit information flow. If not, it writes the property into the object.
The basic functionality is to search for the property in the object and its prototype chain, and change it. If the property is
not found, a new property for the current object with the property label as the context is created. Based on whether the
property is in the object itself (or needs to be created in the object itself) or in the prototype chain of the object, it calls
putDirect and putIndirect, respectively.

del-by-id:

ι = “del-by-id dst:r base:r prop:id”
Γ(!σ(base)) 6= ? (θ′, v) := delById(Γ(!ρ), σ, θ, base, prop) L := Γ(v) t Γ(!ρ)

V := Υ(v) (Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′′, σ′, ρ′

del-by-id deletes the property specified by prop in the object contained in base. If the structure label of the object is less
than the context, the deletion does not happen. If the property is found, the property is deleted and Boolean value true is
written to dst , else it writes false to dst . The label of the Boolean value is the structure label of the object joined with the
property label.

getter-setter:

ι = “put-getter-setter base:r prop:id getter:r setter:r”,
? /∈ Γ(!σ(getter)), ? /∈ Γ(!σ(setter)),

θ′ := putGetterSetter(Γ(!ρ), σ, base, prop, !σ(getter), !σ(setter)),
ι′ := Succ(!σ.CFG, ι), ρ′ := isIPD(ι′, ρ)

θ, ι, σ, ρ → θ, ι′′, σ, ρ′

getter-setter puts the accessor descriptor to the object in register base. It initially checks if the structure label of the object
is greater or equal to the context. The property for which the accessor properties are added is given in the register prop.
The property label of the accessor functions is set to the context. putGetterSetter calls putIndirect internally and sets the
getter/setter property of the object with the specified value.

get-pnames:

ι = “get-pnames dst:r base:r i:r size:r breakTarget:offset”
Γ(!σ(base)) 6= ? (v1, v2, v3, ι

′) := getPropNames(σ, ι, base, i, size, breakTarget)
Ln := Γ(!σ(base)) t Γ(vn) t Γ(!ρ) Vn := Υ(vn), n := 1, 2, 3

(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L1 := L1) � (L1 := ?)
(Γ(!σ(i)) ≥ Γ(!ρ))⇒ (L2 := L2) � (L2 := ?)

(Γ(!σ(size)) ≥ Γ(!ρ))⇒ (L3 := L3) � (L3 := ?)

σ′′ := σ
[

Υ(!σ(dst)):=V1
Γ(!σ(dst)):=L1

]
σ′′′ := σ′′

[
Υ(!σ′′(i)):=V2
Γ(!σ′′(i)):=L2

]
σ′ := σ′′′

[
Υ(!σ′′′(size)):=V3
Γ(!σ′′′(size)):=L3

]
vn = undefined ⇒ (L = Γ(!σ(base))) �

(L = Γ(!σ(base)) t Γ(θ(!σ(base))) t (∀p ∈ Prop(θ(!σ(base))).Γ(p)))
ρ′′ = ρ.push(L, IPD(ι),CF(ι), false) ρ′ := isIPD(ι′, ρ′′, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

get-pnames creates a property name list for object in register base and puts it in dst , initializing i and size for iteration
through the list, after the deferred NSU check. If base is undefined or null, it jumps to breakTarget. It is a branching
instruction and pushes the label with join of all the property labels and the structure label of the object along with the IPD
on the pc-stack. If the IPD of the instruction is SEN or the same as the top of the pc-stack, then we just join the label on
top of the pc-stack with the context label determined above.

next-pname:

ι = “next-pname dst:r base:r i:n size:n iter:n target:offset”
(v1, v2, ι

′) := getNextPropNames(σ, ι, base, i, size, iter , target)
Ln := Γ(vn) t Γ(!ρ) Vn := Υ(vn), n := 1, 2
(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L1 := L1) � (L1 := ?)
(Γ(!σ(i)) ≥ Γ(!ρ))⇒ (L2 := L2) � (L2 := ?)

σ′′ := σ
[

Υ(!σ(dst)):=V1
Γ(!σ(dst)):=L1

]
σ′ := σ′′

[
Υ(!σ′′(i)):=V2
Γ(!σ′′(i)):=L2

]
ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

next-pname copies the next name from the property name list created by get-pnames in iter to dst after deferred NSU
check, and jumps to target. If there are no names left, it continues with the next instruction. Although, it behaves as a



branching instruction, the context pertaining to this opcode is already pushed in get-pnames. Also, the IPD corresponding to
this instruction, is the same as the one determined by get-pnames. Thus, we do not push on the pc-stack in this instruction.

resolve:

ι = “resolve dst:r prop:id”
v := resolveInSc(Γ(!ρ), !σ.sc, prop)

L := Γ(v) t Γ(!ρ) V := Υ(v) (Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

resolve searches for the property in the scope chain and writes it into dst register, if found. The label of the property written
in dst is a join of the context label, all the nodes (structure label of the object contained in it) traversed in the scope chain
and the label associated with the pointers in the chain until the node (object) where the property is found. If the initial label
of the value contained in dst was lower than the context label, then the label of the value in dst is joined with ?. In case
the property is not found, the instruction throws an exception (similar to throw, as described later).

resolve-skip:

ι = “resolve-skip dst:r prop:id skip:n”
v := resolveInScWithSkip(Γ(!ρ), !σ.sc, prop, skip)

L := Γ(v) t Γ(!ρ) V := Υ(v) (Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

resolve-skip looks up the property named by prop in the scope chain similar to resolve, but it skips the top skip levels and
writes the result to register dst . If the property is not found, it also raises an exception and behaves similarly to resolve.

resolve-global:

ι = “resolve-global dst:r prop:id”
v := resolveGlobal(Γ(!ρ), σ, prop)

L := Γ(v) t Γ(!ρ) V := Υ(v) (Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

resolve-global looks up the property named by prop in the global object. If the structure of the global object matches the
one passed here, it looks into the global object. Else, it falls back to perform a full resolve.

resolve-base:

ι = “resolve-base dst:r prop:id isStrict:bool”
v := resolveBase(Γ(!ρ), σ, !σ.sc, prop, isStrict)

L := Γ(v) t Γ(!ρ) V := Υ(v) (Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

resolve-base looks up the property named by prop in the scope chain similar to resolve but writes the object to register dst .
If the property is not found and isStrict is false, the global object is stored in dst .

resolve-with-base:

ι = “resolve-with-base bDst:r pDst:r prop:id”
(bdst, pdst) := resolveBaseAndProperty(Γ(!ρ), σ, baseDst, propDst, prop)

L1 := Γ(!σ(bdst)) t Γ(!ρ) V1 := Υ(!σ(bdst))
L2 := Γ(!σ(pdst)) t Γ(!ρ) V2 := Υ(!σ(pdst))
(Γ(!σ(bDst)) ≥ Γ(!ρ))⇒ (L1 := L1) � (L1 := ?)
(Γ(!σ(pDst)) ≥ Γ(!ρ))⇒ (L2 := L2) � (L2 := ?)

σ′′ := σ
[

Υ(!σ(bDst)):=V1

Γ(!σ(bDst)):=L1

]
σ′ := σ′′

[
Υ(!σ′′(pDst)):=V2

Γ(!σ′′(pDst)):=L2

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

resolve-with-base looks up the property named by prop in the scope chain similar to resolve-base and writes the object to
register bDst. It also, writes the property to pDst. If the property is not found it raises an exception like resolve.

get-scoped-var:

ι = “get-scoped-var dst:r index:n skip:n”
v := getScopedVar(Γ(!ρ), σ, θ, index , skip) L := Γ(v) t Γ(!ρ) V := Υ(v)

(Γ(!σ(dst)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(dst)):=V
Γ(!σ(dst)):=L

]
ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

get-scoped-var loads the contents of the index local from the scope chain skipping skip nodes and places it in dst , after
deferred NSU. The label of the value in dst includes the join of the current context along with all the structure label of
objects in the skipped nodes.



put-scoped-var:

ι = “put-scoped-var index:n skip:n value:r”
Γ(!σ(value)) 6= ? σ′ := putScopedVar(Γ(!ρ), σ, θ, index , skip, value)

ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

put-scoped-var puts the contents of the value in the index local in the scope chain skipping skip nodes. The label of the
value includes the join of the current context along with the structure label of all the objects in the skipped nodes.

push-scope:

ι = “push-scope scope:r”
σ′ := pushScope(Γ(!ρ), σ, scope) ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

push-scope converts scope to object and pushes it onto the top of the current scope chain. The contents of the register scope
are replaced by the created object. The scope chain pointer label is set to the context.

pop-scope:

ι = “pop-scope”
σ′ := popScope(Γ(!ρ), σ) ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

pop-scope removes the top item from the current scope chain if the scope chain pointer label is greater than or equal to the
context.

jmp-scope:

ι = “jmp-scope count:n target:n”
σ′ := jmpScope(Γ(!ρ), σ, count) ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

jmp-scope removes the top count items from the current scope chain if the scope chain pointer label is greater than or equal
to the context. It then jumps to offset specified by target.

throw:

ι = “throw ex:r” excValue := Υ(!σ(ex))
(σ′, ι′) := throwException(σ, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

throw throws an exception and points to the exception handler as the next instruction to be executed, if any. The exception
handler might be in the same function or in an earlier function. If it is not present, the program terminates. If it has an
exception handler, it has an edge to the synthetic exit node. Apart from this, throwException pops the call-frames from the
call-stack until it reaches the call-frame containing the exception handler. It writes the exception value to a local interpreter
variable (excValue), which is then read by catch.

catch:

ι = “catch ex:r”
L := Γ(excValue) t Γ(!ρ) (Γ(!σ(ex)) ≥ Γ(!ρ))⇒ (L := L) � (L := ?)

σ′ := σ
[

Υ(!σ(ex)):=Υ(excValue))

Γ(!σ(ex)):=L

]
excValue := empty

ι′ := Succ(!σ′.CFG, ι) ρ′ := isIPD(ι′, ρ, σ′)

θ, ι, σ, ρ → θ, ι′, σ′, ρ′

catch catches the exception thrown by an instruction whose handler corresponds to the catch block. It reads the exception
value from excValue and writes into the register ex. If the label of the register is less than the context, a ? is joined with
the label. It then makes the excValue empty and proceeds to execute the first instruction in the catch block.

3) Proofs and Results: The fields in a frame of the pc-stack are denoted by the following symbols: !ρ.ipd represents the
IPD field in the top frame of the pc-stack, Γ(!ρ) returns the label field in the top frame of the pc-stack, and !ρ.C returns the
call-frame field in the top frame of the pc-stack.

In the equivalence relation ∼β` , ` = L. The level of the attacker (L) is omitted for clarity purposes from definitions and
proofs.

Definition 10 (Partial bijection). A partial bijection β is a binary relation on heap locations satisfying the following
properties: (1) if (a, b) ∈ β and (a, b′) ∈ β, then b = b′, and (2) if (a, b) ∈ β and (a′, b) ∈ β, then a = a′.

Using partial bijections, we define equivalence of values, labeled values and objects.

Definition 11 (Value equivalence). Two values r1 and r2 are equivalent up to β, written r1 ∼β r2 if either (1) r1 = a,
r2 = b and (a, b) ∈ β, or (2) r1 = r1 = v where v is some primitive value.

Definition 12 (Labeled value equivalence). Two labeled values v1 = r`11 and v2 = r`22 are equivalent up to β, written
v1 ∼β v2 if one of the following holds: (1) `1 = ? or `2 = ?, or (2) `1 = `2 = H , or (3) `1 = `2 = L and r1 ∼β r2.



The first clause of the above definition is standard for the permissive-upgrade check. It equates a partially leaked value
to every other labeled value.

Objects are formally denoted as N = ({pi 7→ {vi,flagsi}}ni=0, __proto__ 7→ a`p , `s) . Here pis correspond to the property
name, vis are their respective values and flagsi represent the writable, enumerable and configurable flags as described in
the PropertyDescriptor structure in the cpp model above. As the current model does not allow modification of the flags ,
they are always set to true . Thus, we do not need to account for the flagsi in the equivalence definition below. __proto__
represents a labelled pointer to the object’s prototype.

Definition 13 (Object equivalence). For ordinary objects N = ({pi 7→ {vi, flagsi}}ni=0, __proto__ 7→ a`p , `s) and
N ′ = ({p′i 7→ {v′i,flags ′i}}mi=0, __proto__ 7→ a′`

′
p , `′s), we say N ∼β N ′ iff either `s = `′s = H or the following hold: (1)

`s = `′s = L, (2) [p0, . . . , pn] = [p′0, . . . , p
′
m] (in particular, n = m), (3) ∀i. vi ∼β v′i, and (4) a`p ∼β a`

′
p .

For function objects F = (N, f,Σ) and F ′ = (N ′, f ′,Σ′), we say F ∼β F ′ iff either N.`s = N.`′s = H or N ∼β N ′,
f =β f ′ and Σ ∼β Σ′.

The equality f =β f ′ of nodes f, f ′ in CFGs means that the portions of the CFGs reachable from f, f ′ are equal modulo
renaming of operands to bytecodes under β. Equivalence Σ ∼β Σ′ of scope chains is defined below. Because we do not
allow ? to flow into heaps, we do not need corresponding clauses in the definition of object equivalence.

Definition 14 (Heap equivalence). For two heaps θ1, θ2, we say that θ1 ∼β θ2 iff ∀(a, b) ∈ β. θ1(a) ∼β θ2(b).

Unlike objects, we allow ? to permeate scope chains, so our definition of scope chain equivalence must account for
it. Scope chains are denoted as Σ. A scope-chain node contains a label ` along with an object S (either JSActivation or
JSObject) represented as (S, `).

Definition 15 (Scope chain equivalence). For two scope chain nodes S, S′, we say that S ∼β S′ if one of the following
holds: (1) S = O, S′ = O′ and O ∼β O′, or (2) S = v0 : . . . : vn, S′ = v′0 : . . . : v′n and ∀i. vi ∼β v′i.

Equivalence of two scope chains Σ,Σ′ is defined by the following rules. (1) nil ∼β nil (2) (nil ∼β (S, `)) if ` = H or
` = ? (3) ((S, `) ∼β nil) if ` = H or ` = ? and (4) ((S, `) : Σ) ∼β ((S′, `′) : Σ′) if one of the following holds: (a) ` = ?
or `′ = ?, (b) ` = `′ = H , or (c) ` = `′ = L, S ∼β S′ and Σ ∼β Σ′.

Definition 16 (Call-frame equivalence). For two call frames µ1, µ2, we say µ1 ∼β µ2 iff (1) #Registers(µ1) =
#Registers(µ2), (2) ∀i. µ1.Registers[i] ∼β µ2.Registers[i], (3) µ1.CFG =β µ2.CFG , (4) µ1.Scopechain ∼β
µ2.Scopechain, (5) µ1.ιr = µ2.ιr (6) (µ1.`c = µ2.`c = H) ∨ (µ1.`c = µ2.`c = L ∧ µ1.fcallee ∼β µ2.fcallee) (7)
µ1.argcount = µ2.argcount (8) µ1.getter = µ2.getter and (9) µ1.dReg =β µ1.dReg

Note that a register is simply a labeled value in our semantics, so clause (2) above is well-defined.

Definition 17 (pc-stack equivalence). For two pc-stacks ρ1, ρ2, we say ρ1 ∼ ρ2 iff the corresponding nodes of ρ1 and ρ2

having label L are equal, except for the call-frame (C) field.

In proofs that follow, two pc-stack nodes are equal if their respective fields are equal, except for the call-frame (C) field.

Definition 18 (Call-stack equivalence). Given ρ1 ∼ ρ2, suppose:

1) e1 is the lowest H-labelled node in ρ1

2) e2 is the lowest H-labelled node in ρ2

3) µ1 is the node of σ1 pointed to by e1

4) µ2 is the node of σ2 pointed to by e2

5) σ′1 is prefix of σ1 up to and including µ1 or
if Γ(!ρ1) = L or ρ1 is empty, σ′1 = σ1

6) σ′2 is prefix of σ2 up to and including µ2 or
if Γ(!ρ2) = L or ρ2 is empty, σ′2 = σ2

then σ1 ∼βρ1,ρ2
σ2, iff (1) |σ′1| = |σ′2|, and (2) ∀i ≤ |σ′1|.(σ′1[i] ∼β σ′2[i]).

Definition 19 (State equivalence). Two states s1 = 〈θ1, ι1, σ1, ρ1〉 and s2 = 〈θ2, ι2, σ2, ρ2〉 are equivalent, written as
s1 ∼β s2, iff ι1 = ι2, ρ1 ∼ ρ2, θ1 ∼β θ2, and σ1 ∼βρ1,ρ2

σ2.

Lemma 4 (Confinement Lemma). Suppose C = 〈ι, σ, ρ〉, C ′ = 〈ι′, σ′, ρ′〉, 〈θ, C〉 → 〈θ′, C ′〉 and Γ(!ρ) = H , then ρ ∼ ρ′,
σ ∼βρ,ρ′ σ′ and θ ∼β θ′ where β = {(a, a) | a ∈ θ}



Proof: As Γ(!ρ) = H , the L labelled nodes in the pc-stack will remain unchanged. Branching instructions pushing a
new node would have label H due to monotonicity of pc-stack. Even if ι′ is the IPD corresponding to the !ρ.ipd , it would
only pop the H labelled node. Thus, the L labelled nodes will remain unchanged. Hence, ρ ∼ ρ′.

We assume that the !ρ is the first node labelled H in the context stack. For, other higher labelled nodes above the first
node labelled H in the pc-stack, the call-frames corresponding to the nodes having L label in the pc-stack remain the same.
Hence, σ ∼βρ,ρ′ σ′.
By case analysis on the instruction type:

1) prim:
a) If Γ(!σ(dst)) ≥ Γ(!ρ), then Γ(!σ(dst)) = H .

By premise of prim, Γ(!σ′(dst)) = H . By Definition 12, !σ(dst) ∼β !σ′(dst).
b) If Γ(!σ(dst)) < Γ(!ρ), then Γ(!σ′(dst)) will contain a ? and by Definition 12, !σ(dst) ∼β !σ′(dst).
Only dst changes in the call-frame, so by Definition 16, !σ ∼β !σ′. Also, other call-frames remain unchanged. By
Definition 18, σ ∼βρ,ρ′ σ′.
θ = θ′, thus, θ ∼β θ′.

2) mov: Similar to prim.
3) jfalse: σ = σ′ and θ = θ′, so, σ ∼βρ,ρ′ σ′ and θ ∼β θ′.
4) loop-if-less: Similar to jfalse.
5) typeof : Similar to prim.
6) instanceof : Similar to prim.
7) enter: σ = σ′, so σ ∼βρ,ρ′ σ′. θ = θ′, so θ ∼β θ′.
8) ret: If !σ.getter = false then only !σ is popped, the call-frames until (!ρ.C) are unchanged. When !σ.getter = true,

then it sets !σ′(!σ.dReg) with !σ(res). Now, let σ1 is the prefix of σ such that !ρ.C =β !σ1. If !σ′ /∈ σ1 then changes
in !σ′ does not effect the callframe equivalence and if !σ′ ∈ σ1 then Γ(!σ′(!σ.dReg)) = ? (when Γ(!σ1(!σ.dReg))) =
L or Γ(!σ1(!σ.dReg))) = ?) and Γ(!σ′(!σ.dReg))) = H (when Γ(!σ1(!σ.dReg))) = H), each of the cases give
!σ1(!σ.dReg) ∼β !σ′(!σ.dReg) from Definition 12. So, σ ∼βρ,ρ′ σ′, by Definition 18. θ = θ′, so θ ∼β θ′.

9) end: The confinement lemma does not apply.
10) call: If it pushes on top of pc-stack, !ρ.C is the lowest H-labelled node in ρ′. If it joins the label with !ρ, the L labelled

nodes remain unchanged and the !ρ.C = !ρ′.C. All the call-frames until !ρ.C remain unchanged. So, by Definition 18,
σ ∼βρ,ρ′ σ′.
- If its a JS call:. θ = θ′, so θ ∼β θ′.
- If its a host call: For the native calls invokeNativeMethod ensures that the structure label the object (first argument
of the call) is greater than the PC. In case of DOM calls the DOM might get modified, so we need to check for the
low-equivalence of that:
• insertBefore: The newChild is inserted only if Γ(newChild.parent) ≥ H , Γ(newChild.nextSibling) ≥ H and

Γ(newChild.previousSibling) ≥ H and for the following cases:
a) refChild is null: Insertion is allowed only when Γ(lastChild) ≥ H in the parent node. Also, for the existing

lastChild Γ(lastChild.nextSibling) ≥ H .
b) refChild is the firstChild: Insertion is allowed only when Γ(firstChild) ≥ H in the parent node and

Γ(refChild.previousSibling) ≥ H for the refChild.
c) Otherwise: The insertion is allowed only if the Γ(refChild.previous.nextSibling) ≥ H in the previousSibling

of the refChild and Γ(refChild.previousSibling) ≥ H in the refChild.
By Definition 14, θ ∼β θ′. γ will get the newChild as the value and its new label would be Γ(newChild) t Γ(!ρ)
(γ is internal to the interpreter and is handled in call-put-result)

• replaceChild: The newChild replaces the oldChild only if Γ(newChild.parent) ≥ H , Γ(newChild.nextSibling) ≥
H and Γ(newChild.previousSibling) ≥ H and if the oldChild is not null, Γ(oldChild.parent) ≥ H ,
Γ(oldChild.nextSibling) ≥ H and Γ(oldChild.previousSibling) ≥ H and for the following cases:
a) oldChild is both the firstChild and the lastChild of the parentNode: Replacement is allowed only when

Γ(firstChild) ≥ H , Γ(lastChild) ≥ H in the parentNode.
b) oldChild is the firstChild of the parentNode: Replacement is allowed only when Γ(firstChild) ≥ H in the

parentNode and Γ(oldChild.next.previousSibling) ≥ H for the oldChild’s next sibling.
c) oldChild is the lastChild of the parentNode: Replacement is allowed only when Γ(lastChild) ≥ H in the

parentNode, and Γ(oldChild.previous.nextSibling) ≥ H for the oldChild’s next sibling.



d) oldChild is some other sibling: Replacement is allowed only when Γ(oldChild.previous.nextSibling) ≥ H in
the previous sibling of oldChild and Γ(oldChild.next.previousSibling) ≥ H in the next sibling of the oldChild.

In all cases θ ∼β θ′ from Definiton 14. γ will get the oldChild as the value and its new label would either
Γ(oldChild) t Γ(!ρ) (γ is internal to the interpreter and is handled in call-put-result)

• removeChild: The oldChild is removed if the oldChild is not null and Γ(oldChild.parent) ≥ H ,
Γ(oldChild.nextSibling) ≥ H and Γ(oldChild.previousSibling) ≥ H , and for the following cases:
a) oldChild is the only child of the parentNode: Removal is allowed only when Γ(firstChild) ≥ H and

Γ(lastChild) ≥ H in the parent node.
b) oldChild is the first child of the parentNode: Removal is allowed only when Γ(firstChild) ≥ H in the parentNode

and Γ(oldChild.next.previousSibling) ≥ H for the oldChild’s next sibling.
c) oldChild is the last child of the parentNode: Removal is allowed only when Γ(lastChild) ≥ H in the parentNode

and Γ(oldChild.previous.nextSibling) ≥ H for the oldChild’s previous sibling.
d) oldChild is some other sibling: Removal is allowed only when Γ(oldChild.previous.nextSibling) ≥ H in the

previous sibling of oldChild and Γ(oldChild.next.previousSibling) ≥ H in the next sibling of the oldChild.
In all cases θ ∼β θ′ from Definiton 14. γ will get the oldChild as the value and its new label would either
Γ(oldChild) t Γ(!ρ) (γ is internal to the interpreter and is handled in call-put-result)

• appendChild: The newChild is appended only if the newChild is not null, and Γ(newChild.parent) ≥ H ,
Γ(newChild.nextSibling) ≥ H and Γ(newChild.previousSibling) ≥ H and for the following cases:
a) parentNode does not have any Child: Append operation is only allowed when in the parentNode Γ(firstChild) ≥
H , Γ(lastChild) ≥ H .

b) parentNode has some Children: Append operation is only allowed when in the parentNode Γ(lastChild) ≥ H
and Γ(last.nextSibling) ≥ H in the existing lastChild of the parentNode.

In all cases θ ∼β θ′ from Definiton 14.
• hasChildNodes: θ = θ′.
• cloneNode: A deep or a shallow cloning is performed and in either case the new nodes created have label ≥ H . So,
θ ∼β θ′ from Definiton 14.

• normalize: Normalize on a given node succeeds only when all the adjacent textnodes and blanknodes next siblings
and previous siblings have labels: Γ(nextSibling) ≥ H and Γ(previousSibling) ≥ H .

• isSupported: θ = θ′.
• compareDocumentPosition: θ = θ′.
• isSameNode: θ = θ′.
• lookupPrefix: θ = θ′.
• isDefaultNamespace: θ = θ′.
• lookupNamespaceURI: θ = θ′.
• isEqualNode:θ = θ′.
• getFeature: θ = θ′.
• substringData: θ = θ′.
• appendData: Append operation succeeds only if the Γ(data) in characterData ≥ H and Γ(textNode) ≥ H . Hence,

from Definiton 14 θ ∼β θ′.
• insertData: Insert operation succeeds only if the Γ(data) in characterData ≥ H and Γ(textNode) ≥ H . Hence, from

Definiton 14 θ ∼β θ′.
• deleteData: Delete operation succeeds only if the Γ(data) in characterData ≥ H and Γ(textNode) ≥ H . Hence,

from Definiton 14 θ ∼β θ′.
• replaceData: Replace operation succeeds only if the Γ(data) in characterData ≥ H and Γ(textNode) ≥ H . Hence,

from Definiton 14 θ ∼β θ′.
• getAttribute: θ = θ′.
• setAttribute: Similar to replaceChild.
• removeAttribute: Similar to removeChild.
• getAttributeNode: θ = θ′.
• setAttributeNode: Similar to setAttribute.
• removeAttributeNode: Similar to removeAttribute.
• getElementsByTagName: Generates a live list wiht label ≥ H . So, from Definiton 14 θ ∼β θ′.
• getAttributeNS: θ = θ′.



• setAttributeNS: Similar to setAttribute.
• removeAttributeNS: Similar to removeAttribute.
• getAttributeNodeNS: θ = θ′.
• setAttributeNodeNS: Similar to setAttribute.
• getElementsByTagNameNS: Similar to getElementsByTagName.
• hasAttribute: θ = θ′.
• hasAttributeNS: θ = θ′.
• splitText: Split operation succeeds only if the Γ(data) in characterData ≥ H . Along with that all checks in insertefore

are also performed. Hence, from Definiton 14 θ ∼β θ′.
• createElement: It creates an element node with a label atleast H and the different pointers also labeled at least H .

So, from Definiton 14 θ ∼β θ′.
• createDocumentFragment: It creates a Document fragment node with a label atleast H and the different pointers also

labeled at least H . So, from Definiton 14 θ ∼β θ′.
• createTextNode: It creates a text node with label atleast H and the different pointers also labeled at least H . So,

from Definiton 14 θ ∼β θ′.
• createComment: It creates a comment node with a label atleast H and the different pointers also labeled at least H .

So, from Definiton 14 θ ∼β θ′.
• createCDATASection: It creates a CDATAsection node with a label atleast H and the different pointers also labeled

at least H . So, from Definiton 14 θ ∼β θ′.
• createProcessingInstruction: It creates a ProcessingInstruction node with a label atleast H and the different pointers

also labeled at least H . So, from Definiton 14 θ ∼β θ′.
• createAttribute:It creates an attribute node with a label atleast H and the different pointers also labeled at least H .

So, from Definiton 14 θ ∼β θ′.
• createEntityReference: It creates an entityreference node with a label atleast H and the different pointers also labeled

at least H . So, from Definiton 14 θ ∼β θ′.
• importNode: From appendChild, θ ∼β θ′.
• createElementNS: Similar to createElement.
• createAttributeNS: Similar to createAttribute.
• getElementById: θ = θ′.
• adoptNode: From appendChild and removeNode, θ ∼β θ′.
• normalizeDocument: similar to normalize.
• renameNode: This case handled by reasoning from replaceChild and removeChild.
• addEventListener: Can add a event listener only for H node. Thus, low parts of θ remain the same. Hence, θ ∼β θ′
• removeEventListener: Can remove a event listener only for H node. Thus, low parts of θ remain the same. Hence,
θ ∼β θ′

11) call-put-result: Similar to prim.
12) call-eval: If it is a user-defined eval, it is similar to call.

In strict mode, it pushes a node on scope-chain with label H if Γ(!σ′.Σ) = H , else labels it ?. In non-strict mode, it
does not push a node on the scope-chain. !σ remains equivalent with corresponding call-frame in σ′ by Definition 16.
As other L call-frames are unchanged, by Definition 18, σ ∼βρ,ρ′ σ′.
θ = θ′, so θ ∼β θ′.

13) create-arguments: Over the initial β, by Definition 14, θ ∼β θ′. If the argument object is created at x, then β = (x, x)∪β
after the step is taken.
σ ∼βρ,ρ′ σ′ (Similar to prim).

14) new-func: Over the initial β, by Definition 14, θ ∼β θ′. If the function object is created at x, then β = (x, x)∪ β after
the step is taken.
σ ∼βρ,ρ′ σ′ (Similar to prim).

15) create-activation: Over the initial β, by Definition 14, θ ∼β θ′. If the argument objects is created at x, then β = (x, x)∪β
after the step is taken.
It puts the object in dst with label H or ?, depending on dst value’s initial label. Also, pushes a node containing
the object in the scope chain with a ?, if Γ(!σ.Σ) = L ∨ ? or with label H , if Γ(!σ.Σ) = H or (!σ.Σ) = nil.
Thus, !σ.Σ ∼β !σ′.Σ by Definition 15. By Definition 16, !σ ∼β !σ′. Other call-frames are unchanged, so σ ∼βρ,ρ′ σ′ by
Definition 18.



16) construct: Similar to call.
17) create-this: Similar to create-arguments.
18) new-object: Over the initial β, by Definition 14, θ ∼β θ′. If the new object is created at x, then β = (x, x) ∪ β after

the step is taken.
σ ∼βρ,ρ′ σ′ (Similar to prim).

19) get-by-id: Similar to mov when the property is a data property. If the property is an accessor property then getter is
invoked and if the invocation of getter pushes an entry on top of pc-stack, !ρ.C remains the lowest H-labelled node in
ρ′. If it joins the label with !ρ, the L labelled nodes remain unchanged and the !ρ.C = !ρ′.C. All the call-frames until
!ρ.C remain unchanged. So, by Definition 18, σ ∼βρ,ρ′ σ′. θ = θ′, so θ ∼β θ′.

20) put-by-id: Sets the property of the object base object to the value with label H if the structure label of the object
`s = H . Thus, the object remains low-equivalent by Definition 13. Thus, θ ∼β θ′ by Definition 14.
Also, σ = σ′, so, σ ∼βρ,ρ′ σ′.

21) del-by-id : Deletes the property if structure label of object, `s = H . Thus, the object remains low-equivalent by
Definition 13. By Definition 14, θ ∼β θ′.
σ ∼βρ,ρ′ σ′ (Similar to mov).

22) getter-setter: Sets accessor property of the object base object with Γ(getter) and Γ(setter) and label H if the structure
label of the object `s = H . Thus, the object remains low-equivalent by Definition 13. Thus, θ ∼β θ′ by Definition 14.
Also, σ = σ′, so, σ ∼βρ,ρ′ σ′.

23) get-pnames: Similar to mov and jfalse.
24) next-pname: Similar to mov.
25) resolve: If the property exists, it is similar to mov. If it does not, it is similar to throw.
26) resolve-skip: Similar to resolve.
27) resolve-global: Similar to resolve.
28) resolve-base: Similar to resolve.
29) resolve-with-base: Similar to resolve.
30) get-scoped-var: Similar to mov.
31) put-scoped-var: Writes the value in the indexth register in skipth node. If Γ(!σ(index )) = H , then, Γ(!σ′(index )) = H .

Else if Γ(!σ(index )) = L, then, Γ(!σ′(index )) = ?. Other call-frames are unchanged. Thus, σ ∼βρ,ρ′ σ′ by Definition
16 and 18.
θ = θ′, so θ ∼β θ′.

32) push-scope: Pushes node on scope-chain with label H if Γ(!σ.Σ) = H or (!σ.Σ) = nil. Else, assigns a ? as the label.
Thus, !σ.Σ ∼β !σ′.Σ. Registers remain unchanged. By Definition 16, !σ ∼β !σ′. Other call-frames are unchanged, so by
Definition 18, σ ∼βρ,ρ′ σ′. θ = θ′, so θ ∼β θ′.

33) pop-scope: Pops the node from the scope-chain if Γ(!σ.Σ) = H ∨ ?. Registers remain unchanged. By Definition 16,
!σ ∼β !σ′. Other call-frames are unchanged, so by Definition 18, σ ∼βρ,ρ′ σ′. θ = θ′, so θ ∼β θ′.

34) jmp-scope: Similar to pop-scope.
35) throw: Pops the call-frames until the handler is reached, i.e., until (!ρ.C). The property of IPD ensures that !σ′ = (!ρ.C).

Either !ρ′.ipd = !ρ.ipd or ι′ = !ρ.ipd . Thus, !ρ.C is !σ′. This call-frame and the ones below remain unchanged. Thus,
σ ∼βρ,ρ′ σ′ by Definition 18.
θ = θ′, so θ ∼β θ′.

36) catch: Similar to mov.

Corollary 3. If 〈θ0, ι0, σ0, ρ0〉 →n 〈θn, ιn, σn, ρn〉 and ∀(0 ≤ i ≤ n).Γ(!ρi) = H , then ρ0 ∼ ρn, and σ0 ∼βρ0,ρn σn

Proof: To prove: ρ0 ∼ ρn.
Proof by induction on n.
Basis: ρ0 ∼ ρ0

IH : ρ0 ∼ ρn−1

From Definition 17, L labelled nodes of ρ0 and ρn−1 are equal. From Lemma 4, ρn−1 ∼ ρn so, L labelled nodes of ρn−1

and ρn are equal. Thus, L labelled nodes of ρ0 and ρn are equal and by Definition 17, ρ0 ∼ ρn.

To prove: σ0 ∼βρ0,ρn σn.
Basis: σ0 ∼βρ0,ρ0

σ0.



IH: σ0 ∼βρ0,ρn−1
σn−1.

From Lemma 4, σn−1 ∼βρn−1,ρn σn. As ∀(0 ≤ i ≤ n).Γ(ρi) = H , the lowest H-labelled node is the same (pc-stack grows
monotonically) in ρ0, ρn−1, ρn. Let the call-frames pointed to by lowest H-labelled node be C0, Cn−1, Cn with call-stack
size until the call-frames k (from Definition 18 size of the prefix is same and by transitivity of equality it is the same for
all the three cases).
∀µ0 ∈ σ0, µn−1 ∈ σn−1, µn ∈ σn until C0, Cn−1, Cn respectively with sizes k, the following conditions hold:

1) ∀(1 ≤ i ≤ k).((µ0[i].#Registers) = (µn−1[i].#Registers)) and ∀(1 ≤ i ≤ k).((µn−1[i].#Registers) =
(µn[i].#Registers)).
Thus, ∀(1 ≤ i ≤ k).((µ0[i].#Registers) = (µn[i].#Registers)).

2) As the number of registers is the same, given by r,
∀(1 ≤ i ≤ k).∀r((µ0[i].Registers[r]) ∼β (µn−1[i].Registers[r])) and
∀(1 ≤ i ≤ k).∀r.((µn−1[i].Registers[r]) ∼β (µn[i].Registers[r])).
Let v`00 , v`n−1

n−1 and v`nn represents the values in the registers for σ0, σn−1 and σn respectively. Then from Definition 12
a) `0 = `n−1 = H: In this case `n = H and v`00 ∼β v`nn (from Lemma 4 and Definition 12).
b) `0 = `n−1 = L and v0 = vn−1: In this case either:

i) `n = ?
ii) `n = L and vn−1 = vn: In this case, the value remains unchanged.
Thus, from Definition 12 v`00 ∼β v`nn .

c) `0 = ? ∨ `n−1 = ?: Now the following cases arise:
i) `0 = ?: v`00 ∼β v`nn .

ii) `n−1 = ?: By Lemma 4 ln = ?. Thus, v`00 ∼β v`nn .
3) ∀(1 ≤ i ≤ k).((µ0[i].CFG) = (µn−1[i].CFG)) and ∀(1 ≤ i ≤ k).((µn−1[i].CFG) = (µn[i].CFG)).

Thus, ∀(1 ≤ i ≤ k).((µ0[i].CFG) = (µn[i].CFG)).
4) ∀(1 ≤ i ≤ k).((µ0[i].Σ) ∼β (µn−1[i].Σ)) and ∀(1 ≤ i ≤ k).((µn−1[i].Σ) ∼β (µn[i].Σ)).

From Definition 15:
a) If nil0 and niln−1 be the two scope chains, then due to confinement (Lemma 4) µn[i].Σ = nil or µn[i].Σ = (S, `n),

where `n = H . In either case ∀(1 ≤ i ≤ k).((µ0[i].Σ) ∼β (µn[i].Σ)) from Definition 15.
b) If ((S0, `0) : Σ0), ((Sn−1, `n−1) : Σn−1) and ((Sn, `n) : Σn) be the three scope-chains, then for((S0, `0) : Σ0) and

((Sn−1, `n−1) : Σn−1) one of the following holds:
i) `0 = ? ∨ `n−1 = ?: Due to confinement (Lemma 4) and Definition 15 `n = ?.

ii) `0 = `n−1 = H: Due to confinement (Lemma 4) and Definition 15 ln = H .
iii) `0 = `n−1 = L ∧ S0 ∼β Sn−1 ∧ Σ0 ∼β Σn−1: Due to confinement (Lemma 4) either one should hold:

A) `n = ?: By Definition 15.
B) `n = L ∧ Sn−1 ∼β Sn ∧ Σn−1 ∼β Σn: No additions to the scope chain.

Thus, ∀(1 ≤ i ≤ k).((µ0[i].Σ) ∼β (µn[i].Σ)) from Definition 15.
5) ∀(1 ≤ i ≤ k).((µ0[i].ιr) = (µn−1[i].ιr)) and ∀(1 ≤ i ≤ k).((µn−1[i].ιr) = (µn[i].ιr)).

Thus, ∀(1 ≤ i ≤ k).((µ0[i].ιr) = (µn[i].ιr)).
6) ∀(1 ≤ i ≤ k).(((µ0[i].`c) = (µn−1[i].`c) = H) ∨ (((µ0[i].`c) = (µn−1[i].`c) = L) ∧ ((µ0[i].fc) = (µn−1[i].fc)))) and
∀(1 ≤ i ≤ k).(((µn−1[i].`c) = (µn[i].`c) = H) ∨ (((µn−1[i].`c) = (µn[i].`c) = L) ∧ ((µn−1[i].fc) = (µn[i].fc)))).
Then either:
• ∀(1 ≤ i ≤ k).((µ0[i].`c) = (µn[i].`c) = H) or
• ∀(1 ≤ i ≤ k).(((µ0[i].`c) = (µn[i].`c) = L) ∧ ((µ0[i].fc) = (µn[i].fc))).

7) ∀(1 ≤ i ≤ k).((µ0[i].argcount) = (µn−1[i].argcount)) and ∀(1 ≤ i ≤ k). ((µn−1[i].argcount) = (µn[i].argcount)).
Thus, ∀(1 ≤ i ≤ k).((µ0[i].argcount) = (µn[i].argcount)).

8) ∀(1 ≤ i ≤ k).((µ0[i].getter) = (µn−1[i].getter)) and ∀(1 ≤ i ≤ k).((µn−1[i].getter) = (µn[i].getter)).
Thus, ∀(1 ≤ i ≤ k).((µ0[i].getter) = (µn[i].getter)).

9) ∀(1 ≤ i ≤ k).((µ0[i].dReg) =β (µn−1[i].dReg)) and ∀(1 ≤ i ≤ k).((µn−1[i].dReg) =β (µn[i].dReg)).
Thus, ∀(1 ≤ i ≤ k).((µ0[i].dReg) =β (µn[i].dReg)).

From Definition 16 and Definition 18, σ0 ∼βρ0,ρn σn.

Corollary 4. If 〈θ0, ι0, σ0, ρ0〉 →? 〈θn, ιn, σn, ρn〉 and ∀(0 ≤ i ≤ n).Γ(!ρi) = H , then θ0 ∼β θn



Proof: By induction on n.
Basis: θ0 ∼β θ0 by Definition 14.
IH: θ0 ∼β θn−1.
From IH and Definition 14, ∀(a, b) ∈ β.(θ0(a) ∼β θn−1(b). From Lemma 4, θn−1 ∼β θn. Thus, ∀(b, c) ∈ β.(θn−1(b) ∼β
θn(c)
As (a, b) ∈ β and (b, c) ∈ β, we have (a, c) ∈ β because β is an identity bijection. Thus, if ∀(a, c) ∈ β.(θ0(a) ∼β θn(c),
then θ0 ∼β θn. If θ0(a) and θn−1(b) contain an ordinary object, then for their respective structure labels `s and `′s, either:

• `s = `′s = H: If `′s = H , then `′′s = H by Definition 13, where `′′s is the structure label of the object in θn(c). Thus,
θ0(a) ∼β θn(c).

• `s = `′s = L: [p0, . . . , pn] = [p′0, . . . , p
′
m] (n = m), ∀i. vi ∼β v′i, and a`p ∼β a`

′
p for respective properties in θ0(a) and

θn−1(b).
If `′s = L, then `′′s = L and [p′0, . . . , p

′
m] = [p′′0 , . . . , p

′′
k ] (m = k), ∀i. v′i ∼β v′′i , and a`

′
p ∼β a`

′′
p for respective properties

in θn−1(b) and θn(c).
`s = `′′s = L, [p0, . . . , pn] = [p′′0 , . . . , p

′′
k ] (n = k). If ∀i. vi ∼β v′i and ∀i. v′i ∼β v′′i , then either `i = `′i = `′′i = H

or `i = `′i = `′′i = L and ri = r′i = r′′i = n. Also, as a`p ∼β a`
′
p and a`

′
p ∼β a`

′′
p , we have a`p ∼β a`

′′
p . Thus, by

Definition 13 θ0(a) ∼β θn(c).

If θ0(a) and θn−1(b) contain a function object, then for their respective structure labels `s and `′s, either:

• `s = `′s = H: If `′s = H , then `′′s = H by Definition 13, where `′′s is the structure label of the function object in θn(c).
Thus, θ0(a) ∼β θn(c).

• `s = `′s = L: `′′s = L is the structure label of the function object in θn(c). Thus, N ∼β N ′′ from the above result for
objects. The CFGs f =β f ′ =β f ′′ and the scope chains Σ ∼β Σ′′ by Corollary 3. Thus, θ0(a) ∼β θn(c).

Thus, θ0 ∼β θn.

Lemma 5 (Supporting Lemma 1). Suppose C1 = 〈ι, σ1, ρ1〉, C2 = 〈ι, σ2, ρ2〉,
C ′1 = 〈ι′1, σ′1, ρ′1〉, C ′2 = 〈ι′2, σ′2, ρ′2〉
〈θ1, C1〉 → 〈θ′1, C ′1〉,
〈θ2, C2〉 → 〈θ′2, C ′2〉,
ρ1 ∼ ρ2, Γ(!ρ1) = Γ(!ρ2) = L, Γ(!ρ′1) = Γ(!ρ′2) and (σ1 ∼βρ1,ρ2

σ2) ∧ (θ1 ∼β θ2)

then ρ′1 ∼ ρ′2, and ∃β′ : ((β′ ⊇ β) ∧ (σ′1 ∼
β′

ρ′1,ρ
′
2
σ′2) ∧ (θ′1 ∼β

′
θ′2)).

Proof: Every instruction executes isIPD at the end of the operation. If ι′i is the IPD corresponding to the !ρi.ipd , then
it pops the first node on the pc-stack. As ρ1 ∼ ρ2 and Γ(!ρ1) = Γ(!ρ2), ι′i would either pop in both the runs or in none.
Thus, ρ′1simρ

′
2. For instructions that push (branch), we explain in respective instructions.

Proof by case analysis on the instruction type:

1) prim: No new object is created, so β′ = β.
As σ1 ∼βρ1,ρ2

σ2, so !σ1 ∼β !σ2 and !σ1(srci) ∼β !σ2(srci) for i = 1, 2. Case analysis on the definition of ∼β for srci.
• If (Γ(!σ1(src1)) = ? ∨ Γ(!σ1(src2)) = ? ∨ Γ(!σ2(src1)) = ? ∨ Γ(!σ2(src2)) = ?), then Γ(!σ1(dst)) = ? ∨

Γ(!σ1(dst)) = ?. Hence, !σ1(dst) ∼β !σ2(dst) by Definition 12.
• If Γ(!σ1(src1)) = Γ(!σ1(src2)) = H and Γ(!σ2(src1)) = Γ(!σ2(src2)) = H Γ(!σ1(dst)) = Γ(!σ2(dst)) = H . So,

!σ1(dst) ∼β !σ2(dst) by Definition 12.
• If !σ1(src1) = !σ2(src1) ∧ Γ(!σ1(src2)) = H ∧ Γ(!σ2(src2)) = H , then Γ(!σ1(dst)) = Γ(!σ2(dst)) = H . So,

!σ1(dst) ∼β !σ2(dst) by Definition 12.
Symmetrical reasoning for !σ1(src2) = !σ2(src2) ∧ Γ(!σ1(src1)) = H ∧ Γ(!σ2(src1)) = H .

• !σ1(src1) = !σ2(src1) ∧ !σ1(src2) = !σ2(src2):
!σ1(dst) = !σ2(dst). So, !σ1(dst) ∼β !σ2(dst) by Definition 12.

Only dst changes in the top call-frame of both the call-stacks. Thus, by Definition 16, !σ′1 ∼β !σ′2. Other call-frames
in σ′1 and σ′2 are unchanged. By Definition 18, σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2.

θ1 = θ′1 and θ2 = θ′2, so, θ′1 ∼β
′
θ′2.

2) mov: Similar reasoning as prim with single source.
3) jfalse: No new object is created, so β′ = β.
• !σ1(cond) = !σ2(cond) ∧ Γ(!σ1(cond)) = Γ(!σ2(cond)) = L: L is the label to be pushed on ρ.
• Γ(!σ1(cond)) = Γ(!σ2(cond)) = H: H is the label to be pushed on ρ.



The IPD of ι would be the same as we have same CFG in both the cases. If the IPD is SEN, then we join the label
of !ρi with the label obtained above, which is the same in both the runs. Thus, Γ(!ρ′1) = Γ(!ρ′2). Because ρ1 ∼ ρ2,
ρ′1 ∼ ρ′2.
If the IPD is not SEN, then it is some other node in the same call-frame. Thus the ipd field is also the same. The
H field is false in both the cases. Thus, the pushed node is the same in both the cases and hence, ρ′1 ∼ ρ′2. As,
Γ(!ρ′1) = Γ(!ρ′′2), either ι′1 = ι′2 = IPD(ι) or ι′1 and ι′2 may or may not be equal.
σ′1 = σ1 ∼β

′

ρ′1,ρ
′
2
σ2 = σ′2. θ′1 = θ1 ∼β

′
θ2 = θ′2.

4) loop-if-less: Similar reasoning as jfalse.
5) type-of: Similar to mov.
6) instance-of: No new object is created, so β′ = β.

The label of the value in the dst is the label of the context joined with the label of all the prototype chain pointers
traversed. As !σ1(value) ∼β !σ2(value), where `s and `′s are the structure labels of objects pointed to by !σ1(value)
and !σ2(value) respectively, then by Definition 13:
• If `s = `′s = H , then Γ(!σ′1(dst)) = H and Γ(!σ′2(dst)) = H . So, !σ′1(dst) ∼β !σ′2(dst) from Definition 12.
• If `s = `′s = L, then the objects have similar properties and prototype chains. If it is not an instance and none of

traversed prototype chain and objects are H , then Γ(!σ′1(dst)) = Γ(!σ′2(dst)) = L and false . Else if it is present it
has true . So, !σ′1(dst) ∼β !σ′2(dst) from Definition 12. If any one of traversed prototype chain and objects are H ,
then Γ(!σ′1(dst)) = Γ(!σ′2(dst)) = H . So, !σ′1(dst) ∼β !σ′2(dst) from Definition 12.

Only dst changes in the top call-frame of both the call-stacks. Thus, by Definition 16, !σ′1 ∼β !σ′2. Other call-frames
are unchanged and by Definition 18, σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2.

θ1 = θ′1 and θ2 = θ′2, so, θ′1 ∼β
′
θ′2.

7) enter: No new object is created, so β′ = β.
σ′1 = σ1 ∼β

′

ρ′1,ρ
′
2
σ2 = σ′2. θ′1 = θ1 ∼β

′
θ2 = θ′2.

8) ret: No new object is created, so β′ = β.
Since σ1 ∼β σ2 so only two cases arise for the getter flag.
• !σ1.getter =!σ2.getter = false: σ′1 is same as σ1 with !σ1 popped. Similarly, σ′2 is same as σ2 with !σ2 popped.

As other call-frames are unchanged by Definition 18, σ′1 ∼
β′

ρ′1,ρ
′
2
σ′2.

• !σ1.getter =!σ2.getter = true: only resgister which changes is the σ′1(!σ1.dReg and σ′2(!σ2.dReg). Now,
if Γ(!σ′1(!σ1.dReg)) = Γ(!σ′2(!σ2.dReg)) = H then !σ′1(!σ1.dReg) ∼β !σ′2(!σ1.dReg) from defintion 12. And
if Γ(!σ′1(!σ1.dReg)) = Γ(!σ′2(!σ2.dReg)) = L then !σ′1(!σ1.dReg)) =!σ1(res)σ′2(!σ2.dReg) =!σ2(res) and
!σ1(res) ∼β !σ2(res).

θ′1 = θ1 ∼β
′
θ2 = θ′2.

9) end: No σ′i and θ′i.
10) call:

a) JS function case: No new object is created, so β′ = β.
Pushes the same node on both ρs (similar to jfalse). The only difference is the H field. As the CFGs are same, if it
has an associated exception handler, we set the H field to true in both the runs. Else, it is false . Thus, !ρ′1 = !ρ′2 is
the node pushed on ρ and hence, ρ′1 ∼ ρ′2.
As !σ1(func) ∼β !σ2(func), if:
• (Γ(!ρ′1) = H) : As call-frames until !σ1 and !σ2 remain unchanged, which correspond to the C field in the lowest
H-labelled node and σ1 ∼βρ1,ρ2

σ2, by Definition 18, σ′1 ∼
β′

ρ′1,ρ
′
2
σ′2.

• (Γ(!ρ′1) = L) : Registers created in the new call-frame contain undefined with label L and, as θ1 ∼β θ2 so the
function objects N ∼β N ′ implying !σ′1.CFG =!σ′2.CFG and !σ′1.Σ ∼β !σ′2.Σ, also return addresses are the
same and the callee is the same. So !σ′1 ∼β !σ′2. Other call-frames are unchanged so, σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2.

θ′1 = θ1 ∼β
′
θ2 = θ′2.

b) DOM and host function case: ρ′1 ∼β ρ′2 and σ′1 ∼β σ′2 (reasoning similar to previous subcase). For pure native calls
θ′1 = θ1 ∼β θ2 = θ′2. For impure native calls, since !ρ1 =!ρ2 = L we know that same native method is invoked in
both the runs with low-equivalent arguments. So, θ′1 ∼β θ′2. To prove θ′1 ∼β θ′2 for DOM calls, we have the following
cases:
• insertBefore: σ1(parentNode) ∼β σ2(parentNode), σ1(refChild) ∼β σ2(refChild) and σ1(newChild) ∼β
σ2(newChild) and so are their respective pointers. Thus, the pointer labels are set to !ρ′1 = !ρ′2. Hence, θ′1 ∼β θ′2.



• replaceChild: σ1(parentNode) ∼β σ2(parentNode), σ1(oldChild) ∼β σ2(oldChild) and σ1(newChild) ∼β
σ2(newChild) and so are their respective pointers. Thus, the pointer labels are set to !ρ′1 = !ρ′2. Hence, θ′1 ∼β θ′2

• removeChild: σ1(parentNode) ∼β σ2(parentNode) and σ1(oldChild) ∼β σ2(oldChild), and so are their
respective pointers. Thus, the pointer labels are set to !ρ′1 = !ρ′2. Hence, θ′1 ∼β θ′2

• appendChild: σ1(parentNode) ∼β σ2(parentNode) and σ1(newChild) ∼β σ2(newChild), and so are their
respective pointers. Thus, the pointer labels are set to !ρ′1 = !ρ′2. Hence, θ′1 ∼β θ′2

• hasChildNodes: θ′1 = θ1 ∼β θ2 = θ′2.
• cloneNode: As σ1(node) ∼β σ2(node) and for all its descendant nodes, the cloned nodes will also be low-

equivalent along with the pointers. Thus, θ′1 ∼β θ′2 from Definiton 14.
• normalize: As the text nodes and the blank nodes are all low-equivalent, the normalized node, which is a union

of the text and blank nodes will also be low-equivalent. Thus, θ′1 ∼β θ′2 from Definiton 14.
• isSupported: θ′1 = θ1 ∼β θ2 = θ′2.
• compareDocumentPosition: θ′1 = θ1 ∼β θ2 = θ′2.
• isSameNode: θ′1 = θ1 ∼β θ2 = θ′2.
• lookupPrefix: θ′1 = θ1 ∼β θ2 = θ′2.
• isDefaultNamespace: θ′1 = θ1 ∼β θ2 = θ′2.
• lookupNamespaceURI: θ′1 = θ1 ∼β θ2 = θ′2.
• isEqualNode: θ′1 = θ1 ∼β θ2 = θ′2.
• getFeature: θ′1 = θ1 ∼β θ2 = θ′2.
• substringData: θ′1 = θ1 ∼β θ2 = θ′2.
• appendData: As data1 ∼β data2 and θ1(textNode) ∼β θ2(textNode), θ′1(textNode) ∼β θ′2(textNode). Thus,
θ′1 ∼β θ′2 from Definiton 14.

• insertData: As data1 ∼β data2 and θ1(textNode) ∼β θ2(textNode), θ′1(textNode) ∼β θ′2(textNode). Thus,
θ′1 ∼β θ′2 from Definiton 14.

• deleteData: As data1 ∼β data2 and θ1(textNode) ∼β θ2(textNode), θ′1(textNode) ∼β θ′2(textNode). Thus,
θ′1 ∼β θ′2 from Definiton 14.

• replaceData: As data1 ∼β data2 and θ1(textNode) ∼β θ2(textNode), θ′1(textNode) ∼β θ′2(textNode). Thus,
θ′1 ∼β θ′2 from Definiton 14.

• getAttribute: θ′1 = θ1 ∼β θ2 = θ′2.
• setAttribute: Similar to replaceChild.
• removeAttribute: Similar to removeChild.
• getAttributeNode: θ′1 = θ1 ∼β θ2 = θ′2.
• setAttributeNode: Similar to setAttribute.
• removeAttributeNode: Similar to removeAttribute.
• getElementsByTagName: Generates a live list with label ≥ H . So, from Definiton 14 θ ∼β θ′.
• getAttributeNS: θ′1 = θ1 ∼β θ2 = θ′2.
• setAttributeNS: Similar to setAttribute.
• removeAttributeNS: Similar to removeAttribute.
• getAttributeNodeNS: θ′1 = θ1 ∼β θ2 = θ′2.
• setAttributeNodeNS: Similar to setAttribute.
• getElementsByTagNameNS: Similar to getElementsByTagName.
• hasAttribute: θ′1 = θ1 ∼β θ2 = θ′2.
• hasAttributeNS: θ′1 = θ1 ∼β θ2 = θ′2.
• splitText: Split operation succeeds only if the Γ(data) in characterData ≥ H . Along with that all checks in

insertefore are also performed. Hence, from Definiton 14 θ ∼β θ′.
• createElement: As the arguments are low-equivalent, creates a new element of the same type or with the same

label H . θ′1(newElement) ∼β θ′2(newElement). Thus, θ′1 ∼β θ′2.
• createDocumentFragment: As the arguments are low-equivalent, creates a new document fragment with the same

label (H). θ′1(newDocFragment) ∼β θ′2(newDocFragment). Thus, θ′1 ∼β θ′2.
• createTextNode: As the arguments are low-equivalent, creates a new text node with the same value or with the

same label (H). θ′1(newTextNode) ∼β θ′2(newTextNode). Thus, θ′1 ∼β θ′2.
• createComment: As the arguments are low-equivalent, creates a new comment with the same value or with the

same label (H). θ′1(newComment) ∼β θ′2(newComment). Thus, θ′1 ∼β θ′2.
• createCDATASection:As the arguments are low-equivalent, creates a new CDATA section with the same value or



with the same label (H). θ′1(newCDATA) ∼β θ′2(newCDATA). Thus, θ′1 ∼β θ′2.
• createProcessingInstruction: As the arguments are low-equivalent, creates a new processing instruction with the

same value or with the same label (H). θ′1(newPI) ∼β θ′2(newPI). Thus, θ′1 ∼β θ′2.
• createAttribute: As the arguments are low-equivalent, creates a new attribute with the same value or with the

same label (H). θ′1(newAttr) ∼β θ′2(newAttr). Thus, θ′1 ∼β θ′2.
• createEntityReference: As the arguments are low-equivalent, creates a new entity reference with the same value

or with the same label (H). θ′1(newER) ∼β θ′2(newER). Thus, θ′1 ∼β θ′2.
• importNode: From appendChild, θ′1 ∼β θ′2.
• createElementNS: Similar to createElement.
• createAttributeNS: Similar to createAttribute.
• getElementById: θ′1 = θ1 ∼β θ2 = θ′2.
• adoptNode: From appendChild and removeNode, θ′1 ∼β θ′2.
• normalizeDocument: similar to normalize.
• renameNode: This case handled by reasoning from replaceChild and removeChild.
• addEventListener: The arguments to the method are equivalent, thus, the nodes on which the method is called

are equivalent. The event and listener function are also equivalent. Hence, θ′1 ∼β θ′2.
• removeEventListener: The arguments to the method are equivalent, thus, the nodes on which the method is called

are equivalent and so are the event listener lists. The listener function to be removed are also equivalent. Hence,
θ′1 ∼β θ′2.

11) call-put-result: Similar to move.
12) call-eval: ρ′1 ∼ ρ′2: Similar to op-call.

In strict mode, it pushes a node on the scope-chain with label L. The pushed nodes are low-equivalent. Thus, !σ′1.Σ ∼β
!σ′2.Σ by Definition 15. In non-strict mode, it does not push anything and is similar to call. Thus, σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2 and

θ′1 = θ1 ∼β
′
θ2 = θ′2.

13) create-arguments: Let the argument object be created at x and y in θ1 and θ2, then β′ = β ∪ (x, y). Γ(σ′1(dst)) =

Γ(σ′1(dst)) = L and as !σ1 ∼β !σ2, the objects are low-equivalent. Thus, !σ′1 ∼β
′
!σ2 by Definition 16 and σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2

by Definition 18. Also, θ′1 ∼β
′
θ′2 by Definition 14 as the objects are low-equivalent.

14) new-func: Let the function object be created at x and y in θ1 and θ2, then β′ = β ∪ (x, y). Function objects are
low-equivalent as !σ1.Σ ∼β !σ2.Σ and !σ1(func) ∼β !σ2(func). σ′1(dst) ∼β σ′2(dst) by Definition 12. Thus, !σ′1 ∼β

′
!σ2

by Definition 16 and σ′1 ∼
β′

ρ′1,ρ
′
2
σ′2 by Definition 18. Also, θ′1 ∼β

′
θ′2 by Definition 14 as the objects are low-equivalent.

15) create-activation: Similar to create-arguments.
16) construct: Similar to call.
17) create-this: Similar to create-this.
18) new-object: Similar to create-arguments.
19) get-by-id: No new object is created, so β′ = β.

As !σ1(base) ∼β !σ2(base), either the objects have the same properties or are labelled H because of Definition 13. In
case of data property, either Γ(σ′1(dst)) = Γ(σ′2(dst)) = H or Γ(σ′1(dst)) = Γ(σ′2(dst)) = L and value of prop is the
same. So, by Definition 12 !σ′1(dst) ∼β !σ′2(dst).
In case of an accessor property, only dst changes in the top call-frame of both the call-stacks, and σ′1(dst)) ∼β σ′2(dst))
since σ1 ∼β σ2 and θ1 ∼β θ2 Thus, by Definition 16, !σ′1 ∼β !σ′2. Other call-frames are unchanged and by Definition 18,
σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2. For ρ′1 ∼ ρ′2, reasoning is similar to call. θ1 = θ′1 and θ2 = θ′2, so, θ′1 ∼β

′
θ′2.

20) put-by-id: No new object is created, so β′ = β.
σ′1 = σ1 ∼β

′

ρ′1,ρ
′
2
σ2 = σ′2.

Because σ1 ∼βρ1,ρ2
σ2, if value is labelled H , then the properties created or modified will have label H , and structure

labels of the respective objects will become H . Else if value is labelled L, then the properties created or modified will
have same value and label L. Thus, the objects remain low-equivalent by Definition 13 and hence, by Definition 14,
θ′1 ∼β

′
θ′2.

21) del-by-id: No new object is created, so β′ = β.
If the deleted property is H or if the structure label of the object is H , then (Γ(σ′1(dst)) = Γ(σ′2(dst)) = H). Else
if is labelled L, then (Γ(σ′1(dst)) = Γ(σ′2(dst)) = L) and value is true or false depending on whether the property
is deleted or not. σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2 by Definition 12, 16 and 18. If structure labels of the objects are L, they have same

properties by Definition 13. If not, they have structure label as H . Thus, objects remain low-equivalent by Definition 13



and θ′1 ∼β
′
θ′2 by Definition 14.

22) put-getter-setter: Reasoning similar to put-by-id.
23) get-pnames: No new object is created, so β′ = β.

As σ1 ∼βρ1,ρ2
σ2, !σ1(base) ∼β !σ2(base) and so are the objects (obj1 and obj2), obj 1 ∼β obj 2, as θ1 ∼β θ2. Thus, the

structure label of the object is either H in both the runs or L and have the same properties with values (Definition 13.
The IPD in both the cases is the same and so is the C field. The mH field is set to false . Thus, ρ′1 ∼ ρ′2.
For σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2, it is similar to mov, but done for dst, i and size.

θ′1 = θ1 ∼β
′
θ2 = θ′2.

24) next-pname: Similar to mov, but done for dst and base.
25) resolve: No new object is created, so β′ = β.

If property is found in a L object and the scope-chain node labels are also L, then the property value is the same as
!σ1 ∼β !σ2. If it is in H object or any scope-chain node labels are H or have a ?, then label of the property is H or
?. Thus, !σ′1(dst) ∼β !σ′2(dst) by Definition 12. Thus, σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2. If property is not found in both runs, it is similar

to throw. If property is not found in second run, then in the first run the property is in H context. So, the exception
thrown is also H . Until, the call-frame of !ρ′2.ipd , call-frames are unchanged, so σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2. θ′1 = θ1 ∼β

′
θ2 = θ′2.

26) resolve-skip: Similar to resolve.
27) resolve-global: Similar to resolve.
28) resolve-base: Similar to resolve.
29) resolve-with-base: Similar to resolve.
30) get-scoped-var: No new object is created, so β′ = β.

Reads indexth register in object in skipth node in the scope-chain and writes into dst . As (!σ1.Σ ∼β !σ2.Σ), the value, if
labelled L is the same, else is labelled H or ?. By Definition 12, !σ′1(dst) ∼β !σ′2(dst) and by Definition 16, !σ′1 ∼β !σ′2.
Thus, σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2. θ′1 = θ1 ∼β

′
θ2 = θ′2.

31) put-scoped-var: No new object is created, so β′ = β.
Writes into the scope chain node the same value, if “value” is labelled L. If it is labelled ? in any of the runs,
scope chains remain equivalent. If value is H , it checks the label of register and puts the value with label H or
?. Thus, (!σ′1.Σ ∼β !σ′2.Σ) by Definition 15 and (!σ′1 ∼β !σ′2) by Definition 16. By Definition 18, σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2.

θ′1 = θ1 ∼β
′
θ2 = θ′2.

32) push-scope: No new object is created, so β′ = β.
Pushes in the scope-chain a node containing the object in “scope” with node label L. As (!σ1(scope) ∼β !σ2(scope)) and
(!σ1.Σ ∼β !σ2.Σ), (!σ′1.Σ ∼β !σ′2.Σ) by Definition 15. Registers and other call-frames remain the same, so, σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2.

θ′1 = θ1 ∼β
′
θ2 = θ′2.

33) pop-scope: No new object is created, so β′ = β.
Pops a node from the scope chain if Γ(!σ1.Σ) = Γ(!σ1.Σ) 6= (? ∨ H). As (!σ1.Σ ∼β !σ2.Σ), so (!σ′1.Σ ∼β !σ′2.Σ).
Other registers remain the same, so, σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2. θ′1 = θ1 ∼β

′
θ2 = θ′2.

34) jmp-scope: Similar to pop-scope.
35) throw: No new object is created, so β′ = β.

The property of IPD ensures that !σ′1 = (!ρ1.C) and !σ′2 = (!ρ2.C). The !σ′1 and !σ′2 and the ones below them remain
unchanged. Thus, σ′1 ∼

β′

ρ′1,ρ
′
2
σ′2 by Definition 18.

θ′1 = θ1 ∼β
′
θ2 = θ′2.

36) catch: Similar to mov.

Lemma 6 (Supporting Lemma 2). Suppose
C ′0 = 〈ι0, σ′0, ρ′0〉, C ′′0 = 〈ι0, σ′′0 , ρ′′0〉,
C ′1 = 〈ι′1, σ′1, ρ′1〉, C ′2 = 〈ι′2, σ′2, ρ′2〉,
C ′n = 〈ι′n, σ′n, ρ′n〉, C ′′m = 〈ι′′m, σ′′m, ρ′′m〉 and

1) 〈θ′0, C ′0〉 → 〈θ′1, C ′1〉 →n−1 〈θ′n, C ′n〉,
2) 〈θ′′0 , C ′′0 〉 → 〈θ′′1 , C ′′1 〉 →m−1 〈θ′′m, C ′′m〉,
3) (ρ′0 ∼ ρ′′0), (σ′0 ∼

β
ρ′0,ρ

′′
0
σ′′0 ), (θ′0 ∼β θ′′0 ),

4) (Γ(!ρ′0) = Γ(!ρ′′0) = L), (Γ(!ρ′n) = Γ(!ρ′′m) = L),
5) ∀(0 < i < n).(Γ(!ρ′i) = H) ∧ ∀(0 < j < m).(Γ(!ρ′′j ) = H),



then
(ι′n = ι′′m), (ρ′n ∼ ρ′′m), (σ′n ∼

β
ρ′n,ρ

′′
m
σ′′m), and (θ′n ∼β θ′′m).

Proof: Starting with the same instruction and high context in both the runs, we might get two different instructions, ι′1
and ι′′1 . This is only possible if ι was some branching instruction in the first place and this divergence happened in a high
context. Now,

1) To prove ι′n = ι′′m:
From the property of the IPDs we know that if ι0 pushes a H node on top of pc-stack which was originally L, IPD(ι0)
pops that node. Since we start from the same instrucion ι0, ι′n = ι′′m = IPD(ι), where Γ(!ρ) = L.

2) To prove ρ′n ∼ ρ′′m:
• n > 1 and m > 1: Γ(!ρ′1) = Γ(!ρ′′1), because ι0 pushes equal nodes and ι′1, ι

′′
1 are not the IPDs. As ρ′0 ∼ ρ′′0

and Γ(!ρ′1) = Γ(!ρ′′1), from Lemma 5 we get ρ′1 ∼ ρ′′1 and !ρ′1.ipd =!ρ′′1 .ipd = IPD(ι0), if ι′1 6= IPD(ι0) and
ι′′1 6= IPD(ι0). As ι′n = ι′′m = IPD(ι0), it pops the !ρ′1 and !ρ′′1 , which correspond to ρ′n and ρ′′m in the nth and mth
step. (IPD is the point where we pop the final H node on the pc-stack.) Because ρ′1 ∼ ρ′′1 and from Corollary 3,
ρ′n ∼ ρ′′m.

• n = 1 and m > 1: If Γ(!ρ′1) 6= Γ(!ρ′′1) and ι′1 = IPD(ι0), then Γ(!ρ′1) = L. It pops the node pushed by ι0, i.e.,
Γ(!ρ′n) = L. In the other run as Γ(!ρ′′1) = H and Γ(!ρ′′m) = L, by the property of IPD ι′′m = IPD(ι0), which would
pop from the pc-stack !ρ′′1 , the first frame labelled H on the pc-stack. Thus, ρ′n ∼ ρ′′m.

• n > 1 and m = 1: Symmetric case of the above.
3) To prove σ′n ∼

β
ρ′n,ρ

′′
m
σ′′m:

a) n > 1 and m > 1: From Lemma 5 we get σ′1 ∼
β
ρ′1,ρ

′′
1
σ′′1 . From Corollary 3 we get σ′1 ∼

β
ρ′1,ρ

′
n−1

σ′n−1. And from

Lemma 4 we have σ′n−1 ∼
β
ρ′n−1,ρ

′
n
σ′n. As, ι′n = ι′′m = IPD(ι0), we compare all call-frames of σ′n and σ′′m. As the

IPD of an instruction can lie only in the same call-frame, comparison for all call-frames in σ′0 and σ′′0 suffice.
σ′0 ∼

β
ρ′0,ρ

′′
0
σ′′0 ⇒ ∀i.((µi ∈ σ′0 ∧ νi ∈ σ′′0 ), (µi ∼β νi) ∧ ∀(r ∈ µi, νi).(µi(r) = v1 ∧ νi(r) = v2, v1 ∼β v2)).

Let v1 and v2 be represented by vn and vm in σ′n and σ′′m, respectively. The call-frames in σ′n and σ′′m are represented
by µn and νm, respectively.
• We do case analysis on the different cases of Definitions 12 for v1 and v2, to show vn ∼β vm. As (∀(1 ≤ i <
n).(Γ(!ρ′i) = H) ∧ ∀(1 ≤ j < m).(Γ(!ρ′′j ) = H)):

– If v1 = v2 ∧Γ(v1) = Γ(v2) = L, then either vn = vm or ((? = Γ(vn))∨ (? = Γ(vm))). By Definition 12(1),
vn ∼β vm.

– If Γ(v1) = Γ(v2) = H , then Γ(vn) = Γ(vm) = H . By Definition 12(2), vn ∼β vm.
– If ? = Γ(v1), then ? = Γ(vn) and if ? = Γ(v2), then ? = Γ(vm). By Definition 12(1), vn ∼β vm.

• Lets S1 and S2 be the scopechains in σ′0 and σ′′0 . And Sn and Sm represent the scopechains in σ′n and σ′′m, i.e.,
Sn and Sm are the respective scope-chains in the nth and mth step of the two runs and `n and `m are their node
labels. For scope chain pointers the following cases arise:
i) S1 = S2 = nil: In this case Sn and Sm either remain nil or its head will have a H label, because of the

rules of the instructions that modify the scope-chain.
ii) S1 = (s1, `1) : Σ1 and S2 = (s2, `2) : Σ2:

A) `1 = ? ∨ `2 = ?: In this case `n and `m will be ? too.
B) `1 = `2 = H: In this case `n and `m will be H too.
C) `1 = `2 = L ∧ Σ1 ∼β Σ2: In this case `n = ? and `m = ? or scopechains remain unchanged.

b) n = 1 and m > 1:
In case of jfalse and loop-if-less, σ′0 = σ′1 and σ′′0 = σ′′1 . And in case of get-pnames, if n = 1 and m 6= 1,
Υ(!σ′0(base)) = undefined and Υ(!σ′′0 (base)) 6= undefined . Because σ′0 ∼β σ′′0 , !σ′0(base) ∼β !σ′′0 (base). Hence,
Γ(!σ′0(base)) = Γ(!σ′′0 (base)) = H . Thus, Γ(!σ′1(dst)) = Γ(!σ′1(i)) = Γ(!σ′1(size)) = H and similarly,
Γ(!σ′′1 (dst)) = Γ(!σ′′1 (i)) = Γ(!σ′′1 (size)) = H . Other registers remain unchanged and so do the other call-frames.
Thus, σ′1 ∼

β
ρ′1,ρ

′′
1
σ′′1 . From the case (a) above, we know that if σ′1 ∼

β
ρ′1,ρ

′′
1
σ′′1 , then σ′n ∼

β
ρ′n,ρ

′′
m
σ′′m.

c) n > 1 and m = 1: Symmetric case of the above.
4) To prove θ′n ∼β θ′′m:

a) n > 1 and m > 1: From Lemma 5 we get θ′1 ∼β θ′′1 . From Corollary 4 we get θ′1 ∼β θ′n−1. And from Lemma 4
we have θ′n−1 ∼β θ′n. Assume O1 is an object at x in θ′1 and O2 is an object at y in θ′′1 , such that (x, y) ∈ β and



On and Om are the respective objects in the nth and mth step of the two runs. We do case analysis on the different
cases of Definitions 13 for O1 and O2, to show On ∼β Om.
• If Γ(O1) = Γ(O2) = H , then Γ(On) = Γ(Om) = H . By Definition 13, On ∼β Om.
• If O1 = O2 ∧ Γ(O1) = Γ(O2) = L, then On = Om ∧ Γ(On) = Γ(Om) = L. By Definition 13, On ∼β Om.

Similarly, for function objects, the structure labels would remain H if they were originally H or will remain L with
the same CFGs and scope-chains.

b) n = 1 and m > 1: In case of jfalse, loop-if-less, get-pnames, θ′0 = θ′1 and θ′′0 = θ′′1 . Thus, θ′1 ∼β θ′′1 . From the case
(a) above, we know that if θ′1 ∼β θ′′1 , then θ′n ∼β θ′′m.

c) n > 1 and m = 1: Symmetric case of the above.

Definition 20 (Trace). A trace is defined as a sequence of configurations or states resulting from a program evaluation,
i.e., for a program evaluation P = s1 → s2 → . . . → sn where si = 〈θi, ιi, σi, ρi〉, the corresponding trace is given as
T (P) := s1 :: s2 :: . . . :: sn.

Definition 21 (Epoch-trace). An epoch-trace (E) over a trace T = s1 :: s2 :: . . . :: sn where si = 〈θi, ιi, σi, ρi〉 is defined
inductively as:

E(nil) := nil

E(si :: T ) :=

{
si :: E(T ) if Γ(!ρi) = L,

E(T ) else if Γ(!ρi) = H.

Theorem 5 (Termination-Insensitive Non-interference). Suppose P and P ′ are two program evaluations.

Then for their respective epoch-traces given by:
E(T (P)) = s1 :: s2 :: . . . :: sn,
E(T (P ′)) = s′1 :: s′2 :: . . . :: s′m,

if s1 ∼β s′1 and n ≤ m,
then
∃βn ⊇ β : sn ∼βn s′n
Proof: Proof proceeds by induction on n.

Basis: s1 ∼β s′1, by assumption.
IH: sk ∼βk s′k where βk ⊇ β.
To prove: ∃βk+1 ⊇ β : sk+1 ∼βk+1 s′k+1.
Let sk →i sk+1 and sk →i′ s

′
k+1, then:

• i = i′ = 1: From Lemma 5, sk+1 ∼βk+1 s′k+1 where βk+1 ⊇ β.
• i > 1 or i′ > 1: From Lemma 6, sk+1 ∼βk+1 s′k+1 where βk+1 = β.

Corollary 6. Suppose:
1) 〈θ1, ι1, σ1, ρ1〉 ∼β 〈θ2, ι2, σ2, ρ2〉
2) 〈θ1, ι1, σ1, ρ1〉 →∗ 〈θ′1,end, [], []〉
3) 〈θ2, ι2, σ2, ρ2〉 →∗ 〈θ′2,end, [], []〉

Then, ∃β′ ⊇ β such that θ′1 ∼β
′
θ′2.

Proof: σ1, σ2 and ρ1, ρ2 are empty at the end of ∗ steps. From the semantics, we know that in L context both runs
would push and pop the same number of nodes. Thus, both take same number of steps in L context. Let k be the number of
states in L context. Then in Theorem 5, n = m = k. Thus, sk ∼βk s′k, where sk = 〈θ′1, end , [], []〉 and s′k = 〈θ′2, end , [], []〉.
By Definition 19, θ′1 ∼β

′
θ′2, where β′ = βk.
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