
Types for Information Flow Control: Labeling Granularity and Semantic Models

Vineet Rajani
Max Planck Institute for Software Systems

Saarland Informatics Campus
Germany

Deepak Garg
Max Planck Institute for Software Systems

Saarland Informatics Campus
Germany

Abstract—Language-based information flow control (IFC)
tracks dependencies within a program using sensitivity labels
and prohibits public outputs from depending on secret inputs.
In particular, literature has proposed several type systems for
tracking these dependencies. On one extreme, there are fine-
grained type systems (like Flow Caml) that label all values
individually and track dependence at the level of individual
values. On the other extreme are coarse-grained type systems
(like HLIO) that track dependence coarsely, by associating a
single label with an entire computation context and not labeling
all values individually.

In this paper, we show that, despite their glaring differ-
ences, both these styles are, in fact, equally expressive. To
do this, we show a semantics- and type-preserving translation
from a coarse-grained type system to a fine-grained one and
vice-versa. The forward translation isn’t surprising, but the
backward translation is: It requires a construct to arbitrarily
limit the scope of a context label in the coarse-grained type
system (e.g., HLIO’s “toLabeled” construct). As a separate
contribution, we show how to extend work on logical relation
models of IFC types to higher-order state. We build such logical
relations for both the fine-grained type system and the coarse-
grained type system. We use these relations to prove the two
type systems and our translations between them sound.

1. Introduction

Information flow control (IFC) is the problem of track-
ing flows of information within a computer system and
controlling or prohibiting flows that contravene the policy
in effect. In a language-based setting, IFC requires track-
ing dependencies between a program’s inputs, intermediate
values and outputs. This can be done dynamically with
runtime monitoring [1], [2] or statically using some form of
abstraction interpretation such as a type system. Our focus
in this paper is the second of these methods—IFC enforced
through type systems. In fact, literature has proposed several
type systems for IFC, e.g., [3], [4], [5], [6], [7], [8], [9], [10],
[11]. All these type systems have one aspect in common:
They all introduce security labels or levels, elements of a
security lattice, that abstract program values. These labels
are used to track dependencies between program values.

A significant design consideration for an IFC type sys-
tem is the granularity (or extent) of the label abstraction,
and the effect of this granularity on the expressiveness
of the type system. By expressiveness here we mean the
ability of a type system to type as many semantically secure
programs as possible.1 More specifically, we call a type
system T more expressive than a type system T ′ if there
is a compositional, semantics-preserving transformation of
programs typed under T ′ to programs typed under T .2

The question of granularity has at least two aspects.
First, one may vary the granularity of the labels themselves.
For example, a fine-grained label on a value may precisely
specify the program variables or inputs that the value de-
pends on. On the other hand, a coarse-grained label may
specify only an upper-bound on the confidentiality level
(e.g., “secret”, “top-secret”, etc.) of all inputs on which the
labeled value depends. The effect of varying this notion of
granularity (of the labels) on the expressiveness of the type
system has been studied in prior work [14].

A different kind of granularity, whose expressiveness is
the focus of this paper, is the granularity of labeling (not
labels).3 Here, a fine-grained type system is one that labels
every program value individually. For instance, Flow Caml,
a type system for IFC on ML [3], adds a label on every
type constructor and, hence, on every value, top-level and
nested. As an example, the type (AH×BL)L might ascribe
low (public) pairs, whose first projection is high (private)
and whose second projection is low. (H and L are standard
labels for high and low confidentiality data, respectively.)
Since fine-grained type systems label individual values, they
also track dependencies at the granularity of individual
values. For example, combining a high value with a low
value using a primitive operator in the language results in
a high value. Many other type systems are similarly fine-
grained [4], [5], [6], [7].

In contrast, a coarse-grained type system labels an entire
sub-computation using a single label. All values produced

1. No sound type system can type all semantically secure programs,
since freedom from bad flows (specifically, the standard information flow
security property called noninterference [12]) is undecidable.

2. This notion of expressiveness is closely related to what Felleisen calls
macro expressibility [13].

3. In the rest of the paper, granularity refers to the granularity of labeling,
not the granularity of labels.

within the scope of the sub-computation implicitly have that
label. Hence, it not necessary to label individual values. As
an example, the SLIO and HLIO systems [10] introduce
a monad for heap I/O (similar to Haskell’s IO monad),
but refine the monadic type to include two labels, `i and
`o, as in (SLIO `i `o τ). This type represents stateful
computations of type τ that start from the confidentiality
label `i and end with the confidentiality label `o. `i is an
upper-bound on the confidentiality of all prior computations
that the current computation depends on; accordingly, the
current computation can have write effects at levels above
`i only. `o is an upper-bound on the confidentiality of the
current computation; accordingly, the current computation
can have read effects only at levels below `o. Importantly,
there is no need to label individual values or nested types.
Instead, every value produced by the current computation
implicitly inherits the label `o, and labels are tracked via
monadic sequencing (bind) at the granularity of compu-
tations. Other type systems [8], [9], [11] are also coarse-
grained, although [8], [9] do not use monads to confine
effects.

Given these vastly contrasting labeling granularities for
the same end-goal—information flow control, a natural
question is one of their relative expressiveness [15]. In
general, it seems that fine-grained type systems should be
at least as expressive as coarse-grained type systems, since
the former track flows at finer granularity (individual values
as opposed to entire sub-computations) and, hence, should
abstract flows less than the latter. In the other direction, the
situation is less clear. Upfront, it seems that coarse-grained
type systems may be less expressive than fine-grained type
systems, but then one wonders whether by structuring pro-
grams as extremely small computations in a coarse-grained
type system, one may recover the expressiveness of a fine-
grained type system.

In this paper, we show constructively that both these
intuitions are, in fact, correct. We do this using specific
instances of the two kinds of type systems in the setting
of a higher-order language with state (similar to ML). For
the fine-grained type system we use a system very close to
SLam [7] and the exception-free fragment of Flow Caml [3].
For the coarse-grained type system we use a variant of the
static fragment of HLIO [10]. This calculus has a specific
construct to limit the scope of a computation’s label in a safe
way. We then show that well-typed programs in each type
system can be translated to the other, preserving typability
and meaning. This establishes that the type systems are
equally expressive.

We believe this settles an open question about the rel-
ative expressiveness of setting up IFC type systems with
different labeling granularities. Our result also has an imme-
diate practical consequence: Since coarse-grained IFC type
systems usually burden a programmer less with annotations
(since not every value has to be labeled) and we have shown
now that they are as expressive as fine-grained IFC type
systems, there seems to be some merit to preferring coarse-
grained IFC type systems over fine-grained ones in general.

As a second contribution of independent interest, we

show how to set up semantic, logical relations models of IFC
types in both the fine-grained and the coarse-grained set-
tings, over calculi with higher-order state. While models of
IFC types have been considered before [7], [11], [16], [17],
we do not know of any development that covers higher-order
state. In fact, models of types in the presence of higher-
order state are notoriously difficult. Here, we have the added
complication of information flow labels. Fortunately, enough
development has occurred in the programming languages
community in the past decade to give us a good starting
point. Specifically, our models are based on step-indexed
Kripke logical relations [18]. Like earlier work, our models
are relational, i.e., they relate two runs of a program to each
other. This is essential since we are interested in proving
noninterference [12], the standard security property which
says that public outputs of a program are not influenced by
private inputs (i.e., there are no bad flows). This property
is naturally defined using two runs. Using our models, we
derive proofs of the soundness of both the fine-grained and
the coarse-grained type systems.

We also use our logical relations to show that our
translations are meaningful. Specifically, we set up cross-
language logical relations to prove that our translations
preserve program semantics, and from this, we derive a
crucial result for each translation: Using the noninterference
theorem of the target language as a lemma, we are able to re-
prove the noninterference theorem for the source language
directly. These results imply that our translations preserve
label annotations meaningfully [19]. Like all logical rela-
tions models, we expect that our models can be used for
other purposes as well.

To summarize, the two contributions of this work are:

• Typability- and meaning-preserving translations be-
tween a fine-grained and a coarse-grained IFC type
system, showing that these type systems are equally
expressive.

• Logical relations models of both type systems, cov-
ering both higher-order functions and higher-order
state.

Due to lack of space, many technical details and proofs
are omitted from this paper. These are provided in an
appendix available online from the authors’ homepages.

Note. Readers interested only in our translations but not the
details of our semantic models can skip sections pertaining
to the latter (e.g., Section 2.1.1). This will not affect the
readability of the rest of the paper.

2. The Two Type Systems

In this section, we describe the fine-grained and coarse-
grained type systems we work with. Both type systems
are set up for higher-order stateful languages, but differ
considerably in how they enforce IFC. The fine-grained type
system, called FG, works on a language with pervasive side-
effects like ML, and associates a security label with every
expression in the language. The coarse-grained type system,

CG, works on a language that isolates state in a monad
(like Haskell’s IO monad) and tracks flows coarsely at the
granularity of a monadic computation, not on pure values
within a monadic computation.

Both FG and CG use security labels (denoted by `)
drawn from an arbitrary security lattice (L,v). We de-
note the least and top element of the lattice by ⊥ and
> respectively. As usual, the goal of the type systems is
to ensure that outputs labeled ` depend only on inputs
with security labels ` or lower. For drawing intuitions,
we find it convenient to think of a confidentiality lattice
(labels higher in the lattice represent higher confidentiality).
However, nothing in our technical development is specific
to a confidentiality lattice—the development works for any
security lattice including an integrity lattice and a product
lattice for confidentiality and integrity.

2.1. The fine-grained type system, FG

FG is based on the SLam calculus [7], but uses a
presentation similar to Flow Caml, an IFC type system for
ML [3]. It works on a call-by-value, eager language, which
is a simplification of ML. The syntax of the language is
shown at the top of Figure 1. The language has all the usual
expected constructs: Functions, pairs, sums, and mutable
references (heap locations). The expression !e dereferences
the location that e evaluates to, while e1 := e2 assigns the
value that e2 evaluates to, to the location that e1 evaluates
to. The dynamic semantics of the language are defined by
a “big-step” judgment (H , e) ⇓j (H ′, v), which means that
starting from heap H , expression e evaluates to value v ,
ending with heap H ′. This evaluation takes j steps. The
number of steps is important only for our logical relations
models. The rules for the big-step judgment are standard,
hence omitted here.

Every type τ in FG, including a type nested inside
another, carries a security label. The security label represents
the confidentiality level of the values the type ascribes. It
is also convenient to define unlabeled types, denoted A, as
shown in Figure 1.

Typing rules. FG uses the typing judgment Γ `pc e : τ .
As usual, Γ maps free variables of e to their types. The
judgment means that, given the types for free variables as
in Γ, e has type τ . The annotation pc is also a label drawn
from L, often called the “program counter” label. This label
is a lower bound on the write effects of e. The type system
ensures that any reference that e writes to is at a level pc
or higher. This is necessary to prevent information leaks via
the heap. A similar annotation, `e, appears in the function
type τ1

`e→ τ2. Here, `e is a lower bound on the write effects
of the body of the function.

FG’s typing rules are shown in Figure 1. We describe
some of the important rules. In the rule for case analysis
(FG-case), if the case analyzed expression e has label `, then
both the case branches are typed in a pc that is joined with
`. This ensures that the branches do not have write effects
below `, which is necessary for IFC since the execution

of the branches is control dependent on a value (the case
condition) of confidentiality `. Similarly, the type of the
result of the case branches, τ , must have a top-level label at
least `. This is indicated by the premise τ ↘ ` and prevents
implicit leaks via the result. The relation τ ↘ `, read “τ
protected at `” [11], means that if τ = A`

′
, then ` v `′.

The rule for function application (FG-app) follows sim-
ilar principles. If the function expression e1 being applied
has type (τ1

`e→ τ2)`, then ` must be below `e and the result
τ2 must be protected at ` to prevent implicit leaks arising
from the identity of the function that e1 evaluates to.

In the rule for assignment (FG-assign), if the expression
e1 being assigned has type (ref τ)`, then τ must be protected
at pc t ` to ensure that the written value (of type τ) has a
label above pc and `. The former enforces the meaning of
the judgment’s pc, while the latter protects the identity of
the reference that e1 evaluates to.

All introduction rules such as those for λs, pairs and
sums produce expressions labeled ⊥. This label can be
weakened (increased) freely with the subtyping rule FGsub-
label. The other subtyping rules are the expected ones, e.g.,
subtyping for unlabeled function types τ1

`e→ τ2 is co-variant
in τ2 and contra-variant in τ1 and `e (contra-variance in `e is
required since `e is a lower bound on an effect). Subtyping
for ref τ is invariant in τ , as usual.

The main meta-theorem of interest to us is sound-
ness. This theorem says that every well-typed expression
is noninterferent, i.e., the result of running an expression
of a type labeled low is independent of substitutions used
for its high-labeled free variables. This theorem is formal-
ized below. Note that we work here with what is called
termination-insensitive noninterference; we briefly discuss
the termination-sensitive variant in Section 4.

Theorem 2.1 (Noninterference for FG). Suppose (1) `i 6v `,
(2) x : A`i `pc e : bool`, and (3) v1, v2 : A`i . If both e[v1/x]
and e[v2/x] terminate, then they produce the same value (of
type bool).

By definition, noninterference, as stated above is a rela-
tional (binary) property, i.e., it relates two runs of a program.
Next, we show how to build a semantic model of FG’s types
that allows proving this property.

2.1.1. Semantic model of FG. We now describe our se-
mantic model of FG’s types. We use this model to show
that the type system is sound (Theorem 2.1) and later
to prove the soundness of our translations. Our semantic
model uses the technique of step-indexed Kripke logical
relations [18] and is more directly based on a model of types
in a different domain, namely, incremental computational
complexity [20]. In particular, our model captures all the
invariants necessary to prove noninterference.

The central idea behind our model is to interpret each
type in two different ways—as a set of values (unary inter-
pretation), and as a set of pairs of values (binary interpreta-
tion). The binary interpretation is used to relate low-labeled
types in the two runs mentioned in the noninterference

Expressions e ::= x | λx.e | e e | (e, e) | fst(e) | snd(e) | inl(e) | inr(e) | case(e, x.e, x.e) | new e | !e | e := e
(Labeled) Types τ ::= A`

Unlabeled types A ::= b | unit | τ `e→ τ | τ × τ | τ + τ | ref τ (b denotes a base type)

Typing judgment: Γ `pc e : τ

Γ, x : τ `pc x : τ
FG-var

Γ, x : τ1 ``e e : τ2

Γ `pc λx.e : (τ1
`e→ τ2)⊥

FG-lam

Γ `pc e1 : (τ1
`e→ τ2)` Γ `pc e2 : τ1 L ` τ2 ↘ ` L ` pc t ` v `e

Γ `pc e1 e2 : τ2
FG-app

Γ `pc e1 : τ1 Γ `pc e2 : τ2

Γ `pc (e1, e2) : (τ1 × τ2)⊥
FG-prod

Γ `pc e : (τ1 × τ2)` L ` τ1 ↘ `

Γ `pc fst(e) : τ1
FG-fst

Γ `pc e : τ1

Γ `pc inl(e) : (τ1 + τ2)⊥
FG-inl

Γ `pc e : (τ1 + τ2)` Γ, x : τ1 `pct` e1 : τ Γ, y : τ2 `pct` e2 : τ L ` τ ↘ `

Γ `pc case(e, x.e1, y.e2) : τ
FG-case

Γ `pc′ e : τ ′ L ` pc v pc′ L ` τ ′ <: τ

Γ `pc e : τ
FG-sub

Γ `pc e : τ L ` τ ↘ pc

Γ `pc new e : (ref τ)⊥
FG-ref

Γ `pc e : (ref τ)` L ` τ <: τ ′ L ` τ ′ ↘ `

Γ `pc !e : τ ′
FG-deref

Γ `pc e1 : (ref τ)` Γ `pc e2 : τ L ` τ ↘ (pc t `)
Γ `pc e1 := e2 : unit

FG-assign
Γ `pc () : unit⊥

FG-unitI

Subtyping judgments: L ` A <: A′ and L ` τ <: τ ′

L ` ` v `′ L ` A <: A′

L ` A` <: A′`
′ FGsub-label

L ` ref τ <: ref τ
FGsub-ref

L ` τ ′1 <: τ1 L ` τ2 <: τ ′2 L ` `′e v `e

L ` τ1
`e→ τ2 <: τ ′1

`′e→ τ ′2

FGsub-arrow

Figure 1. FG’s language syntax and type system (selected rules)

theorem, while the unary interpretation is used to interpret
high-labeled types independently in the two runs (since
high-labeled values may be unrelated across the two runs).
What is high and what is low is determined by the level of
the observer (adversary), which is a parameter to our binary
interpretation.

Remark. Readers familiar with earlier models of IFC
type systems [7], [11], [16] may wonder why we need a
unary relation, when prior work did not. The reason is that
we handle an effect (mutable state) in our model, which prior
work did not. In the absence of effects, the unary model is

unnecessary. In the presence of effects, the unary relation
captures what is often called the “confinement lemma” in
proofs of noninterference—we need to know that while the
two runs are executing high branches independently, neither
will modify low-labeled locations.

Unary interpretation. The unary interpretation of types is
shown in Figure 2. The interpretation is actually a Kripke
model. It uses worlds, written θ, which specify the type for
each valid (allocated) location in the heap. For example,
θ(a) = boolH means that location a should hold a high
boolean. The world can grow as the program executes and

bbcV , {(θ,m, v) | v ∈ JbK}
bunitcV , {(θ,m, v) | v ∈ JunitK}
bτ1 × τ2cV , {(θ,m, (v1, v2)) | (θ,m, v1) ∈ bτ1cV ∧ (θ,m, v2) ∈ bτ2cV }
bτ1 + τ2cV , {(θ,m, inl v) | (θ,m, v) ∈ bτ1cV } ∪ {(θ,m, inr v) | (θ,m, v) ∈ bτ2cV }
bτ1

`e→ τ2cV , {(θ,m, λx.e) | ∀θ′.θ v θ′ ∧ ∀j < m.∀v .((θ′, j, v) ∈ bτ1cV =⇒ (θ′, j, e[v/x]) ∈ bτ2c`eE)}
bref τcV , {(θ,m, a) | θ(a) = τ}

bA`cV , bAcV

bτcpcE , {(θ, n, e) | ∀H .(n,H) . θ ∧ ∀j < n.(H , e) ⇓j (H ′, v ′) =⇒
∃θ′.θ v θ′ ∧ (n− j,H ′) . θ′ ∧ (θ′, n− j, v ′) ∈ bτcV ∧

(∀a.H (a) 6= H ′(a) =⇒ ∃`′.θ(a) = A`
′ ∧ pc v `′)∧

(∀a ∈ dom(θ′)\dom(θ).θ′(a)↘ pc)}

(n,H) . θ , dom(θ) ⊆ dom(H) ∧ ∀a ∈ dom(θ).(θ, n− 1,H (a)) ∈ bθ(a)cV

Figure 2. Unary value, expression, and heap conformance relations for FG

dbeAV , {(W , n, v1, v2) | v1 = v2 ∧ {v1, v2} ∈ JbK}
duniteAV , {(W , n, (), ()) | () ∈ JunitK}
dτ1 × τ2eAV , {(W , n, (v1, v2), (v ′1, v

′
2)) | (W , n, v1, v

′
1) ∈ dτ1eAV ∧ (W , n, v2, v

′
2) ∈ dτ2eAV }

dτ1 + τ2eAV , {(W , n, inl v , inl v ′) | (W , n, v , v ′) ∈ dτ1eAV }∪
{(W , n, inr v , inr v ′) | (W , n, v , v ′) ∈ dτ2eAV }

dτ1
`e→ τ2eAV , {(W , n, λx.e1, λx.e2) |

∀W ′ wW , j < n, v1, v2.
((W ′, j, v1, v2) ∈ dτ1eAV =⇒ (W ′, j, e1[v1/x], e2[v2/x]) ∈ dτ2eAE)∧

∀θl wW .θ1, j, vc. ((θl, j, vc) ∈ bτ1cV =⇒ (θl, j, e1[vc/x]) ∈ bτ2c`eE)∧
∀θl wW .θ2, j, vc. ((θl, j, vc) ∈ bτ1cV =⇒ (θl, j, e2[vc/x]) ∈ bτ2c`eE)}

dref τeAV , {(W , n, a1, a2) | (a1, a2) ∈W .β̂ ∧W .θ1(a1) = W .θ2(a2) = τ}

dA`eAV ,

{
{(W , n, v1, v2) | (W , n, v1, v2) ∈ dAeAV } ` v A
{(W , n, v1, v2) | ∀i ∈ {1, 2}.∀m.(W .θi,m, vi) ∈ bAcV } ` 6v A

dτeAE , {(W , n, e1, e2) |
∀H1,H2, j < n.(n,H1,H2)

A
. W ∧ (H1, e1) ⇓j (H ′1, v

′
1) ∧ (H2, e2) ⇓ (H ′2, v

′
2) =⇒

∃W ′ wW .(n− j,H ′1,H ′2)
A
. W ′ ∧ (W ′, n− j, v ′1, v ′2) ∈ dτeAV }

(n,H1,H2)
A
. W , dom(W .θ1) ⊆ dom(H1) ∧ dom(W .θ2) ⊆ dom(H2) ∧ (W .β̂) ⊆ (dom(W .θ1)× dom(W .θ2))∧

∀(a1, a2) ∈ (W .β̂).(W .θ1(a1) = W .θ2(a2) ∧ (W , n− 1,H1(a1),H2(a2)) ∈ dW .θ1(a1)eAV)∧
∀i ∈ {1, 2}.∀m.∀ai ∈ dom(W .θi).(W .θi,m,Hi(ai)) ∈ bW .θi(ai)cV

Figure 3. Binary value, expression and heap conformance relations for FG

allocates more locations. A second important component
used in the interpretation is a step-index, written m or n [21].
Step-indices are natural numbers, and are merely a technical
device to break a non-well-foundedness issue in Kripke
models of higher-order state, like this one. Our use of step-
indices is standard and readers may ignore them.

The interpretation itself consists of three mutually in-
ductive relations—a value relation for types (labeled and
unlabeled), written bτcV ; an expression relation for labeled
types, written bτcpcE ; and a heap conformance relation, writ-
ten (n,H).θ. These relations are well-founded by induction
on the step indices n and types. This is the only role of step-
indices in our model.

The value relation bτcV defines, for each type, which
values (at which worlds and step-indices) lie in that type.
For base types b, this is straightforward: All syntactic values
of type b (written JbK) lie in bbcV at any world and any step
index. For pairs, the relation is the intuitive one: (v1, v2) is
in bτ1 × τ2cV iff v1 is in bτ1cV and v2 is in bτ2cV . The
function type τ1

`e→ τ2 contains a value λx.e at world θ if in
any world θ′ that extends θ, if v is in bτ1cV , then (λx.e) v
or, equivalently, e[v/x], is in the expression relation bτ2c`eE .
We describe this expression relation below. Importantly, we
allow for the world θ to be extended to θ′ since between the
time that the function λx.e was created and the time that the
function is applied, new locations could be allocated. The
type ref τ contains all locations a whose type according to
the world θ matches τ . Finally, security labels play no role
in the unary interpretation, so bA`cV = bAcV (in contrast,
labels play a significant role in the binary interpretation).

The expression relation bτcpcE defines, for each type,
which expressions lie in the type (at each pc, each world θ
and each step index n). The definition may look complex,
but is relatively straightforward: e is in bτcpcE if for any heap
H that conforms to the world θ such that running e starting
from H results in a value v ′ and a heap H ′, there is a some
extension θ′ of θ to which H ′ conforms and at which v′ is
in bτcV . Additionally, all writes performed during the exe-
cution (defined as the locations at which H and H ′ differ)
must have labels above the program counter, pc. In simpler
words, the definition simply says that e lies in bτcpcE if its
resulting value is in bτcV , it preserves heap conformance
with worlds and, importantly, its write effects are at labels
above pc. (Readers familiar with proofs of noninterference
should note that the condition on write effects is our model’s
analogue of the so-called “confinement lemma”.)

The heap conformance relation (n,H) . θ defines when
a heap H conforms to a world θ. The relation is simple; it
holds when the heap H maps every location to a value in
the semantic interpretation of the location’s type given by
the world θ.

Binary interpretation. The binary interpretation of types is
shown in Figure 3. This interpretation relates two executions
of a program with different inputs. Like the unary interpre-
tation, this interpretation is also a Kripke model. Its worlds,
written W , are different, though. Each world is a triple
W = (θ1, θ2, β̂). θ1 and θ2 are unary worlds that specify

the types of locations allocated in the two executions. Since
executions may proceed in sync on the two sides for a while,
then diverge in a high-labeled branch, then possibly re-
synchronize, and so on, some locations allocated on one side
may have analogues on the other side, while other locations
may be unique to either side. This is captured by β̂, which
is a partial bijection between the domains of θ1 and θ2. If
(a1, a2) ∈ β̂, then location a1 in the first run corresponds
to location a2 in the second run. Any location not in β̂ has
no analogue on the other side.

As before, the interpretation itself consists of three mu-
tually inductive relations—a value relation for types (la-
beled and unlabeled), written dτeAV ; an expression relation
for labeled types, written dτeAE ; and a heap conformance

relation, written (n,H1,H2)
A
. W . These relations are all

parametrized by the level of the observer (adversary), A,
which is an element of L.

The value relation dτeAV defines, for each type, which
pairs of values from the two runs are related by that type
(at each world, each step-index and each adversary). At base
types, b, only identical values are related. For pairs, the
relation is the intuitive one: (v1, v2) and (v′1, v

′
2) are related

in dτ1 × τ2eAV iff vi and v′i are related in dτieAV for i ∈
{1, 2}. Two values are related at a sum type only if they are
both left injections or both right injections. At the function
type τ1

`e→ τ2, two functions are related if they map values
related at the argument type τ1 to expressions related at the
result type τ2. For technical reasons, we also need both the
functions to satisfy the conditions of the unary relation. At
a reference type ref τ , two locations a1 and a2 are related
at world W = (θ1, θ2, β̂) only if they are related by β̂ (i.e.,
they are correspondingly allocated locations) and their types
as specified by θ1 and θ2 are equal to τ .

Finally, and most importantly, at a labeled type A`,
dA`eAV relates values depending on the ordering between
` and the adversary A. When ` v A, the adversary can
see values labeled `, so dA`eAV contains exactly the values
related in dAeAV . When ` 6v A, values labeled ` are opaque
to the adversary (in colloquial terms, they are “high”), so
they can be arbitrary. In this case, dA`eAV is the cross
product of the unary interpretation of A with itself. This
is the only place in our model where the binary and unary
interpretations interact.

The expression relation dτeAE defines, for each type,
which pairs of expressions from the two executions lie in
the type (at each world W , each step index n and each
adversary A). The definition is similar to that in the unary
case: e1 and e2 lie in dτeAE if the values they produce
are related in the value relation dτeAV , and the expressions
preserve heap conformance.

The heap conformance relation (n,H1,H2)
A
.W defines

when a pair of heaps H1, H2 conforms to a world W =
(θ1, θ2, β̂). The relation requires that any pair of locations
related by β̂ have the same types (according to θ1 and θ2),
and that the values stored in H1 and H2 at these locations
lie in the binary value relation of that common type.

Meta-theory. The primary meta-theoretic property of a log-
ical relations model like ours is the so-called fundamental
theorem. This theorem says that any expression syntactically
in a type (as established via the type system) also lies in
the semantic interpretation (the expression relation) of that
type. Here, we have two such theorems—one for the unary
interpretation and one for the binary interpretation.

To write these theorems, we define unary and binary
interpretations of contexts, bΓcV and dΓeAV , respectively.
These interpretations specify when unary and binary sub-
stitutions conform to Γ. A unary substitution δ maps each
variable to a value whereas a binary substitution γ maps
each variable to two values, one for each run.

bΓcV , {(θ, n, δ) | dom(Γ) ⊆ dom(δ) ∧ ∀x ∈ dom(Γ).
(θ, n, δ(x)) ∈ bΓ(x)cV }

dΓeAV , {(W , n, γ) | dom(Γ) ⊆ dom(γ) ∧ ∀x ∈ dom(Γ).
(W , n, π1(γ(x)), π2(γ(x))) ∈ dΓ(x)eAV }

Theorem 2.2 (Unary fundamental theorem). If Γ `pc e : τ
and (θ, n, δ) ∈ bΓcV , then (θ, n, e δ) ∈ bτcpcE .

Theorem 2.3 (Binary fundamental theorem). If Γ `pc e : τ
and (W , n, γ) ∈ dΓeAV , then (W , n, e (γ↓1), e (γ↓2)) ∈
dτeAE , where γ↓1 and γ↓2 are the left and right projections
of γ.

The proofs of these theorems proceed by induction on
the given derivations of Γ `pc e : τ . The proofs are tedious,
but not difficult or surprising. The primary difficulty, as
with all logical relations models, is in setting up the model
correctly, not in proving the fundamental theorems.

FG’s noninterference theorem (Theorem 2.1) is a simple
corollary of these two theorems.

2.2. The coarse-grained type system, CG

Our coarse-grained type system, CG, is a variant of the
static fragment of the hybrid IFC type system HLIO [10].4
Like FG, CG also operates on a higher-order, eager, call-by-
value language with state, but it separates pure expressions
from impure (stateful) ones at the level of types. This is
done, as usual, by introducing a monad for state, and limit-
ing all state-accessing operations (dereferencing, allocation,
assignment) to the monad. However, in CG, as in HLIO, the
monad also doubles as the unit of labeling. Values and types
are not necessarily labeled individually in CG. Instead, there
is a confidentiality label on an entire monadic computation.
This makes CG coarse-grained.

CG’s syntax and type system are shown in Figure 4.
The types include all the usual types of the simply typed λ-
calculus and, unlike FG, a label is not forced on every type.
There are two special types: C `1 `2 τ and Labeled ` τ .

The type C `1 `2 τ is the aforementioned monadic type
of computations that may access the heap (expressions of
other types cannot access the heap), eventually producing a
value of type τ . The first label `1, called the pc-label, is a

4. Differences between CG and HLIO and their consequences are dis-
cussed in Section 4.

lower bound on the write effects of the computation. The
second label `2, called the taint label, is an upper bound on
the labels of all values that the computation has analyzed so
far; it is, for this reason, also an implicit label on the output
type τ of the computation, and on any intermediate values
within the computation.

The type Labeled ` τ explicitly labels a value (of type τ)
with label `. In FG’s notation, this would be analogous to τ `.
The difference is that this labeling can be used selectively
in CG; unlike FG, not every type must be labeled. Also,
the reference type ref ` τ carries an explicit label ` in CG.
Such a reference stores a value of type Labeled ` τ . Labels
on references are necessary to prevent implicit leaks via
control dependencies—the type system relates the pc-label
to the label of the written value at every assignment. Similar
labels on references were unnecessary in FG since every
written value always carries a label anyhow.

Typing rules. CG uses the standard typing judgment Γ ` e :
τ . There is no need for a pc on the judgment since effects
are confined to the monad. CG uses the typing rules of the
simply typed λ-calculus for the type constructs b, unit, ×, +
and →. We do not re-iterate these standard rules, and focus
here only on the new constructs. The construct ret(e) is the
monadic return that immediately returns e, without any heap
access. Consequently, it can be given the type C > ⊥ τ (rule
CG-ret). The pc-label is > since the computation has no write
effect, while the taint label is ⊥ since the computation has
not analyzed any value.

The monadic construct bind(e1, x.e2) sequences the
computation e2 after e1, binding the return value of e1
to x in e2. The typing rule for this construct, CG-bind, is
important and interesting. The rule says that bind(e1, x.e2)
can be given the type C ` `4 τ ′ if (e1 : C `1 `2 τ),
(e2 : C `3 `4 τ

′) and four conditions hold. The conditions
` v `1 and ` v `3 check that the pc-label of bind(e1, x.e2),
which is `, is below the pc-label of e1 and e2, which
are `1 and `3, respectively. This ensures that the write
effects of bind(e1, x.e2) are indeed above its pc-label, `. The
conditions `2 v `3 and `2 v `4 prevent leaking the output
of e1 via the write effects and the output of e2, respectively.
Observe how these conditions together track labels at the
level of entire computations, i.e., coarsely.

Next, we describe rules pertaining to the type
Labeled ` τ . This type is introduced using the expres-
sion constructor Lb, as in rule CG-label. Dually, if e :
Labeled ` τ , then the construct unlabel(e) eliminates this
label. This construct has the monadic type C > ` τ . The
taint label ` indicates that the computation has (internally)
analyzed something labeled `. The pc-label is > since
nothing has been written.

Rule CG-deref says that dereferencing (reading) a lo-
cation of type ref `′ τ produces a computation of type
C > ⊥ (Labeled `′ τ). The type is monadic because
dereferencing accesses the heap. The value the computation
returns is explicitly labeled at `′. The pc-label is > since the
computation does not write, while the taint label is ⊥ since
the computation does not analyze the value it reads from

Expressions e ::= x | λx.e | e e | (e, e) | fst(e) | snd(e) | inl(e) | inr(e) | case(e, x.e, y.e) | new e | !e | e := e | () |
Lb(e) | unlabel(e) | toLabeled(e) | ret(e) | bind(e, x.e)

Types τ ::= b | unit | τ → τ | τ × τ | τ + τ | ref ` τ | Labeled ` τ | C `1 `2 τ

Typing judgment: Γ ` e : τ

(All rules of the simply typed lambda-calculus pertaining to the types b, τ → τ, τ × τ, τ + τ , and unit are included.)

Γ ` e1 : C `1 `2 τ Γ, x : τ ` e2 : C `3 `4 τ
′ ` v `1 ` v `3 `2 v `3 `2 v `4

Γ ` bind(e1, x.e2) : C ` `4 τ
′ CG-bind

Γ ` e : τ

Γ ` ret(e) : C > ⊥ τ
CG-ret

Γ ` e : τ ′ L ` τ ′ <: τ

Γ ` e : τ
CG-sub

Γ ` e : τ

Γ ` Lb(e) : Labeled ` τ
CG-label

Γ ` e : Labeled ` τ

Γ ` unlabel(e) : C > ` τ
CG-unlabel

Γ ` e : Labeled ` τ

Γ ` new e : C ` ⊥ (ref ` τ)
CG-ref

Γ ` e : ref `′ τ

Γ ` !e : C > ⊥ (Labeled ` ′τ)
CG-deref

Γ ` e1 : ref ` τ Γ ` e2 : Labeled ` τ

Γ ` e1 := e2 : C ` ⊥ unit
CG-assign

Γ ` e : C ` `′ τ

Γ ` toLabeled(e) : C ` ⊥ (Labeled `′ τ)
CG-toLabeled

Subtyping judgment: L ` τ <: τ ′

L ` τ <: τ ′ L ` ` v `′

L ` Labeled ` τ <: Labeled `′ τ ′
CGsub-labeled

L ` τ <: τ ′ L ` `′1 v `1 L ` `2 v `′2
L ` C `1 `2 τ <: C `′1 `

′
2 τ
′ CGsub-monad

Figure 4. CG’s language syntax and type system (selected rules)

the reference. (The taint label will change to `′ if the read
value is subsequently unlabeled.) Dually, the rule CG-assign
allows assigning a value labeled ` to a reference labeled `.
The result is a computation of type C ` ⊥ unit. The pc-label
` indicates a write effect at level `.

The last typing rule we highlight pertains to a spe-
cial construct, toLabeled(e). This construct transforms e of
monadic type C ` `′ τ to the type C ` ⊥ (Labeled `′ τ). This
is perfectly safe since the only way to observe the output of
a monad is by binding its result and that result is explicitly
labeled in the final type. The purpose of using this construct
is to reduce the taint label of a computation to ⊥. This
allows a subsequent computation, which will not analyze the
output of the current computation, to avoid raising its own
taint label to `′. Hence, this construct limits the scope of the
taint label to a single computation, and prevents overtainting
subsequent computations. We make extensive use of this
construct in our translation from FG to CG. We note that
HLIO’s original typing rule for toLabeled is different, and
does not always allow reducing the taint to ⊥. We discuss
the consequences of this difference in Section 4.

We briefly comment on subtyping for specific constructs
in CG. Subtyping of Labeled ` τ is co-variant in `, since it is
always safe to increase a confidentiality label. Subtyping of
C `1 `2 τ is contra-variant in the pc-label `1 and co-variant
in the taint label `2 since the former is a lower bound while
the latter is an upper bound.

We prove soundness for CG by showing that every

well-typed expression satisfies noninterference. Due to the
presence of monadic types, the soundness theorem takes a
specific form (shown below), and refers to a forcing seman-
tics. These semantics operate on monadic types and actually
perform reads and writes on the heap (in contrast, the pure
evaluation semantics simply return suspended computations
for monadic types). The forcing semantics are the expected
ones, so we defer their details to the appendix.

Theorem 2.4 (Noninterference for CG). Suppose (1) `i 6v `,
(2) x : Labeled `i τ ` e : C ` bool, and (3) v1, v2 :
Labeled `i τ . If both e[v1/x] and e[v2/x] terminate when
forced, then they produce the same value (of type bool).

2.2.1. Semantic model of CG. We build a semantic model
of CG’s types. The model is very similar in structure to the
model of FG’s types. We use two interpretations, unary and
binary, and worlds exactly as in FG’s model. The difference
is that since state effects are confined to a monad in CG, all
the constraints on heap updates move from the expression
relations to the value relations at the monadic types. Owing
to lack of space, and the similarity in the structures of the
models, we defer CG’s model and the fundamental theorems
to the appendix.

3. Translations

In this section, we describe our translations from FG to
CG and vice-versa, thus showing that these two type systems

are equally expressive. We start with the translation from FG
to CG.

3.1. Translating FG to CG

Our goal in translating FG to CG is to show how
a fine-grained IFC type system can be simulated in a
coarse-grained one. Our translation is directed by the type
derivations in FG and preserves typing and semantics. We
describe the translation below, followed by formal properties
of the translation. As a convention, we use the subscript
or superscript s to indicate source (FG) elements, and t
to indicate target (CG) elements. Thus es denotes a source
expression, whereas et denotes a target expression.

The key idea of our translation is to map a source
expression es satisfying `pc es : τ to a monadic target
expression et satisfying ` et : C pc ⊥ LτM. The pc used to
type the source expression is mapped as-is to the pc-label of
the monadic computation. The type of the source expression,
τ , is translated by the function L·M that is described below.
However—and this is the crucial bit—the taint label on the
translated monadic computation is ⊥. To get this ⊥ taint we
use the toLabeled construct judiciously. Not setting the taint
to ⊥ can cause a taint explosion in translated expressions,
which would make it impossible to simulate the fine-grained
dependence tracking of FG.

The function L·M defines how the types of source values
are translated. This function is defined by induction on
labeled and unlabeled source types.

LbM = b
LunitM = unit

Lτ1
`e→ τ2M = Lτ1M→ C `e ⊥ Lτ2M

Lτ1 × τ2M = Lτ1M× Lτ2M
Lτ1 + τ2M = Lτ1M + Lτ2M
Lref τM = ref ` LAM when τ = A`

LA`M = Labeled ` LAM

The translation should be self-explanatory. The only non-
trivial case is the translation of the function type τ1

`e→ τ2.
A source function of this type is mapped to a target function
that takes an argument of type Lτ1M and returns a monadic
computation (the translation of the body of the source
function) that has pc-label `e and eventually returns a value
of type Lτ2M.

Given this translation of types, we next define a type
derivation-directed translation of expressions. This transla-
tion is formalized by the judgment Γ `pc es : τ et. The
judgment means that translating the source expression es,
which has the typing derivation Γ `pc es, yields the target
expression et. This judgment is functional: For each type
derivation Γ `pc es : τ , it yields exactly one et. It is also
easily implemented by induction on typing derivations. The
rules for the judgment are shown in Figure 5. The thing to
keep in mind while reading the rules is that et should have
the type C pc ⊥ LτM.

We illustrate how the translation works using one rule,
FC-app. In this rule, we know inductively that the translation

of e1, i.e., ec1 has type C pc ⊥ L(τ1
`e→ τ2)`M, which is

equal to C pc ⊥ (Labeled ` (Lτ1M → C `e ⊥ Lτ2M)). The
translation of e2, i.e., ec2 has type C pc ⊥ Lτ1M. We wish to
construct something of type C pc ⊥ Lτ2M.

To do this, we bind ec1 to the variable a, which has the
type Labeled ` (Lτ1M → C `e ⊥ Lτ2M). Similarly, we bind
ec2 to the variable b, which has the type Lτ1M. Next, we
unlabel a and bind the result to variable c, which has the
type Lτ1M → C `e ⊥ Lτ2M. However, due to the unlabeling,
the taint label on whatever computation we sequence after
this bind must be at least `. Next, we apply b to c, which
yields a value of type C `e ⊥ Lτ2M. Via subtyping, using the
assumption pc v `e, we can weaken this to C pc ` Lτ2M.
This satisfies the constraint that the taint label be at least `
and is almost what we need, except that we need the taint
⊥ in place of `.

To reduce the taint back to ⊥, we use the defined CG
function coerce taint, which has the type C pc ` τ →
C pc ⊥ τ , when τ has the form Labeled `′ τ ′ with ` v `′.
This last constraint is satisfied here since we know that τ2 ↘
`. The function coerce taint uses toLabeled internally
and is defined in the figure.

This pattern of using coerce taint, which internally
contains toLabeled, to restrict the taint to ⊥ is used to
translate all elimination forms (application, projection, case,
etc.). Overall, our translation uses toLabeled judiciously to
prevent taint from exploding in the translated expressions.

Remark. Readers familiar with monads may note that our
translation from FG to CG is based on the standard interpre-
tation of the call-by-value λ-calculus in the computational
λ-calculus [22]. Our translation additionally accounts for the
pc and security labels, but is structurally the same.

Properties. Our translation preserves typing by construc-
tion. This is formalized in the following theorem. The
context translation LΓM is defined pointwise on all types in Γ.

Theorem 3.1 (Typing preservation). If Γ `pc es : τ in FG,
then there is a unique et such that Γ `pc es : τ et and
that et satisfies LΓM ` et : C pc ⊥ LτM in CG.

An immediate corollary of this theorem is that well-
typed source programs translate to noninterfering target
programs (since target typing implies noninterference in the
target).

Next, we show that our translation preserves the meaning
of programs, i.e., it is semantically “correct”. For this, we
define a cross-language logical relation, which relates source
values (expressions) to target values (expressions) at each
source type. This relation has three key properties: (A)
A source expression and its translation are always in the
relation (Theorem 3.2), (B) Related expressions reduce to
related values, and (C) At base types, the relation is the
identity. Together, these imply that our translation preserves
the meanings of programs in the sense that a function from
base types to base types maps to a target function with the
same extension.

An excerpt of the relation is shown in Figure 6. The
relation is defined over source (FG) types, and is divided

Γ, x : τ `pc x : τ ret x
FC-var

Γ, x : τ1 ``e e : τ2 ec1

Γ `pc λx.e : (τ1
`e→ τ2)⊥ ret(Lb(λx.ec1))

FC-lam

Γ `pc e1 : (τ1
`e→ τ2)` ec1 Γ `pc e2 : τ1 ec2 L ` ` t pc v `e L ` τ2 ↘ `

Γ `pc e1 e2 : τ2 coerce taint(bind(ec1, a.bind(ec2, b.bind(unlabel a, c.(c b)))))
FC-app

Γ `pc e1 : τ1 ec1 Γ `pc e2 : τ2 ec2

Γ `pc (e1, e2) : (τ1 × τ2)⊥ bind(ec1, a.bind(ec2, b.ret(Lb(a, b))))
FC-prod

Γ `pc e : (τ1 × τ2)` ec L ` τ1 ↘ `

Γ `pc fst(e) : τ1 coerce taint(bind(ec, a.bind(unlabel a, b.ret(fst(b)))))
FC-fst

Γ `pc e : τ1 ec

Γ `pc inl(e) : (τ1 + τ2)⊥ bind(ec, a.ret(Lb(inl(a))))
FC-inl

Γ `pc e : (τ1 + τ2)` ec Γ, x : τ1 `pct` e1 : τ ec1 Γ, x : τ1 `pct` e2 : τ ec2 L ` τ ↘ `

Γ `pc case(e, x.e1, y.e2) : τ coerce taint(bind(ec, a.bind(unlabel a, b.case(b, x.ec1, y.ec2))))
FC-case

Γ `pc e : (ref τ)` ec L ` τ <: τ ′ L ` τ ′ ↘ `

Γ `pc !e : τ coerce taint(bind(ec, a.bind(unlabel a, b.!b)))
FC-deref

Γ `pc e1 : (ref τ)` ec1 Γ `pc e2 : τ ec2 τ ↘ (pc t `)
Γ `pc e1 := e2 : unit bind(toLabeled(bind(ec1, a.bind(ec2, b.bind(unlabel a, c.c := b)))), d.ret())

FC-assign

where, coerce taint : C pc ` τ → C pc ⊥ τ when τ = Labeled `′ τ ′ and ` v `′
coerce taint , λx.toLabeled(bind(x, y.unlabel y))

Figure 5. Expression translation FG to CG (selected rules only)

bbcβ̂V , {(sθ,m, sv , tv) | sv ∈ JbK ∧ tv ∈ JbK ∧ sv = tv}
bτ1

`e→ τ2cβ̂V , {(sθ,m, λx.es, λx.et) | ∀sθ′ w sθ, sv , tv , j < m, β̂ v β̂′.(sθ′, j, sv , tv) ∈ bτ1cβ̂
′

V =⇒
(sθ′, j, es[

sv/x], et[
tv/x]) ∈ bτ2cβ̂

′

E }
bref τcβ̂V , {(sθ,m, as, at) | sθ(as) = τ ∧ (sa, ta) ∈ β̂}
bA`′cβ̂V , {(sθ,m, sv , Lb(tv)) | (sθ,m, sv , tv) ∈ bAcβ̂V }

bτcβ̂E , {(sθ, n, es, et) | ∀Hs,Ht.(n,Hs,Ht)
β̂
. sθ ∧ ∀i < n, sv .(Hs, es) ⇓i (H ′s,

sv) =⇒

∃H ′t , tv .(Ht, et) ⇓f (H ′t ,
tv) ∧ ∃sθ′ w sθ, β̂′ w β̂.(n− i,H ′s,H ′t)

β̂′

. sθ′

∧(sθ′, n− i, sv , tv) ∈ bτcβ̂
′

V }

Figure 6. Cross-language value and expression relations for the FG to CG translation (excerpt)

(like our earlier relations) into a value relationb·cβ̂V , an

expression relation b·cβ̂E , and a heap relation (n,Hs,Ht)
β̂
.sθ,

which we omit here. The relations specify when a source
value (resp. expression, heap) is related to a target value
(resp. expression, heap) at a source unary world sθ, a step
index n and a partial bijection β̂ that relates source loca-
tions to corresponding target locations. The relation actually
mirrors the unary logical relation for FG. The definition of
the expression relation forces property (B) above, while the
value relation at base types forces property (C).

Our main result is again a fundamental theorem, shown
below. The symbols δs and δt denote unary substitutions
in the source and target, respectively. The relation bΓcβ̂V is
the obvious one, obtained by pointwise lifting of the value
relation; its definition is in the appendix.

Theorem 3.2 (Fundamental theorem). If Γ `pc es : τ et

and (sθ, n, δs, δt) ∈ bΓcβ̂V , then (sθ, n, es δ
s, et δ

t) ∈ bτcβ̂E .

The proof of this theorem is by induction on the deriva-
tion of Γ `pc es : τ et. This theorem has two important
consequences. First, it immediately implies property (A)
above and, hence, completes the argument that our trans-
lation is semantically correct. Second, the theorem, along
with the binary fundamental theorem for CG, allows us to
re-derive the noninterference theorem for FG (Theorem 2.1)
directly. This re-derivation is important because it provides
confidence that our translation preserves the meaning of
security labels. As a simple counterexample, it is perfectly
possible to translate FG programs to CG programs, preserv-
ing both typing and semantics, by mapping all source labels
to the same target label (say, ⊥). However, we would not be
able to re-derive the source noninterference theorem using
the target’s properties if this were the case.

3.2. Translating CG to FG

This section describes the translation in the other
direction—from CG to FG. The overall structure (but not
the details!) of this translation are similar to that of the
earlier FG to CG translation, so we skip some boilerplate
material here. The superscript or subscript s (source) now
marks elements of CG and t (target) marks elements of FG.

The key idea of the translation is to map a source (CG)
expression es satisfying ` es : τ to a target (FG) expression
et satisfying `> et : JτK. The type translation JτK is defined
below. The pc for the translated expression is > because, in
CG, all effects are confined to a monad, so at the top-level,
there are no effects. In particular, there are no write effects,
so we can pick any pc; we pick the most informative pc, >.

The type translation, JτK, is defined by induction on τ .

JbK = b⊥

Jτ1 → τ2K = (Jτ1K
>→ Jτ2K)

⊥

Jτ1 × τ2K = (Jτ1K× Jτ2K)
⊥

Jτ1 + τ2K = (Jτ1K + Jτ2K)
⊥

Jref ` τK = (ref (JτK + unit)`)⊥

JC `1 `2 τK = (unit
`1→ (JτK + unit)`2)⊥

JLabeled ` τK = (JτK + unit)`

The most interesting case of the translation is that for
C `1 `2 τ . Since a CG value of this type is a suspended
computation, we map this type to a thunk—a suspended
computation implemented as a function whose argument
has type unit. The pc-label on the function matches the pc-
label `1 of the source type. The taint label `2 is placed
on the output type JτK using a coding trick: (JτK + unit)`2 .
The expression translation of monadic expressions only ever
produces values labeled inl, so the right type of the sum,
unit, is never reached during the execution of a translated
expression. The same coding trick is used to translate la-
beled and ref types. We could also have used a different
coding in place of (JτK+unit)`2 . For example, (JτK×unit)`2
works equally well.

The expression translation is directed by source typing
derivations and is defined by the judgment Γ ` es : τ et,
some of whose rules are shown in Figure 7. The transla-
tion is fairly straightforward (given the type translation).
The only noteworthy aspect is the use of the injection inl
wherever an expression of the type form (JτK+unit)` needs
to be constructed.

Properties. The translation preserves typing by construc-
tion, as formalized in the following theorem. The context
translation JΓK is defined pointwise on all types in Γ.

Theorem 3.3 (Typing preservation). If Γ ` es : τ in CG,
then there is a unique et such that Γ ` es : τ et and that
et satisfies JΓK `> et : JτK in FG.

Again, a corollary of this theorem is that well-typed
source programs translate to noninterfering target programs.

We further prove that the translation preserves the se-
mantics of programs. Our approach is the same as that
for the FG to CG translation—we set up a cross-language
logical relation, this time indexed by CG types, and show the
fundamental theorem. From this, we derive that the trans-
lation preserves the meanings of programs. Additionally,
we derive the noninterference theorem for CG using the
binary fundamental theorem of FG, thus gaining confidence
that our translation maps security labels properly. Since this
development mirrors that for our earlier translation, we defer
the details to the appendix.

4. Discussion

Practical implications. Our results establish that a coarse-
grained IFC type system that labels at the granularity of
entire computations can be as expressive as a fine-grained

Γ ` e : τ eF

Γ ` Lb`(e) : Labeled ` τ inl(eF)
label

Γ ` e : Labeled ` τ eF

Γ ` unlabel(e) : C > ` τ λ .eF
unlabel

Γ ` e : C `1 `2 τ eF

Γ ` toLabeled(e) : C `1 ⊥ (Labeled `2 τ) λ .inl(eF ())
toLabeled

Γ ` e : τ eF

Γ ` ret(e) : C > ⊥ τ λ .inl(eF)
ret

Γ ` e1 : C `1 `2 τ eF1 Γ, x : τ ` e2 : C `3 `4 τ
′ eF2 ` v `1 ` v `3 `2 v `3 `2 v `4

Γ ` bind(e1, x.e2) : C ` `4 τ
′ λ .case(eF1(), x.eF2(), y.inr())

bind

Figure 7. Expression translation CG to FG (selected rules only)

IFC type system that labels every individual value, if the
coarse-grained type system has a construct like toLabeled
to limit the scope of taints. It is also usually the case
that a coarse-grained type system burdens a programmer
less with annotations as compared to a fine-grained type
system. This leads to the conclusion that, in general, there
is merit to preferring coarse-grained IFC type systems with
taint-scope limiting constructs over fine-grained IFC type
systems. In a coarse-grained type system, the programmer
can benefit from the reduced annotation burden and simulate
the fine-grained type system when the fine-grained labeling
is absolutely necessary for verification. Since our embedding
of the fine-grained type system in the coarse-grained type
system is compositional, it can be easily implemented in
the coarse-grained type system as a library of macros, one
for each construct of the language of the fine-grained type
system.

Original HLIO. The original HLIO system [10], from
whose static fragment CG is adapted, differs from CG in the
interpretation of the labels `1 and `2 in the monadic type
C `1 `2 τ . CG interprets these labels as the pc-label and
the taint label, respectively. HLIO interprets these labels as
the starting taint and the ending taint of the computation.
This implies an invariant that `1 v `2 and makes HLIO
more restrictive that CG. The relevant consequence of this
difference is that the rule for toLabeled cannot always lower
the final taint to ⊥. HLIO’s rule is:

Γ ` e : C ` `′ τ

Γ ` toLabeled(e) : C ` ` (Labeled `′ τ)
CG-toLabeled

This restrictive rule makes it impossible to translate from FG
to HLIO in the way we translate from FG to CG. In fact, [15]
already explains how this restriction makes a translation
from FG to the static fragment of HLIO very difficult. Our
observation here is that HLIO’s restriction, inherited from
a prior system called LIO, is not important for statically
enforced IFC and eliminating it allows a simple embedding
of a fine-grained IFC type system.

Nonetheless, we did investigate further whether we can
embed FG into the static fragment of the unmodified HLIO.
The answer is still affirmative, but the embedding is complex
and requires nontrivial quantification over labels. Part II of
our appendix contains a complete account of this embedding

(in fact, the appendix contains a parallel account of all our
results using the original HLIO in place of CG).

HLIO also has two constructs, getLabel and labelOf,
that allow reflection on labels. However, these constructs
are meaningful only because HLIO uses hybrid (both static
and dynamic) enforcement and carries labels at runtime. In
a purely static enforcement, such as CG’s, labels are not
carried at runtime, so reflection on them is not meaningful.

Full abstraction. Since our translations preserve typed-
ness, they map well-typed source programs to noninterfering
target programs. However, an open question is whether they
preserve contextual equivalence, i.e., whether they are fully
abstract. Establishing full abstraction will allow translated
source expressions to be freely co-linked with target ex-
pressions. We haven’t attempted a proof of full abstraction
yet, but it looks like an interesting next step. We note that
since our dynamic semantics (big-step evaluation) are not
cognizant of IFC (which is enforced completely statically),
it may be sufficient to generalize our translations to simply-
typed variants of FG and CG, and prove those fully abstract.

Other IFC properties. Our current setup is geared towards
proving termination-insensitive noninterference, where the
adversary cannot observe nontermination. We believe that
the approach itself and the equivalence result should general-
ize to termination-sensitive noninterference, but will require
nontrivial changes to our development. For example, we will
have to change our binary logical relations to imply co-
termination of related expressions and, additionally, modify
the type systems to track nontermination as a separate effect.

Another relevant question in whether our equivalence
result can be extended to type systems that support de-
classification and, more foundationally, whether our logical
relations can handle declassification. This is a nuanced
question, since it is unclear hitherto how declassification can
be given a compositional semantic model. We are working
on this problem currently.

5. Related work

We focus on related work directly connected to our
contributions—logical relations for IFC type systems and
language translations that care about IFC.

Logical relations for IFC type systems. Logical rela-
tions for IFC type systems have been studied before to

a limited extent. Sabelfeld and Sands develop a general
theory of models of information flow types based on partial-
equivalence relations (PERs), the mathematical foundation
of logical relations [16]. However, they do not use these
models for proving any specific type system or translation
sound. The pure fragment of the SLam calculus was proven
sound (in the sense of noninterference) using a logical
relations argument [7, Appendix A]. However, to the best of
our knowledge, the relation and the proof were not extended
to mutable state. The proof of noninterference for Flow
Caml [3], which is very close to SLam, considers higher-
order state (and exceptions), but the proof is syntactic, not
based on logical relations. The dependency core calculus
(DCC) [11] also has a logical relations model but, again,
the calculus is pure. The DCC paper also includes a state-
passing embedding from the IFC type system of Volpano,
Irvine and Smith [4], but the state is first-order. Mantel et
al. use a security criterion based on an indistinguishability
relation that is a PER to prove the soundness of a flow-
sensitive type system for a concurrent language [17]. Their
proof is also semantic, but the language is first-order. In
contrast to these prior pieces of work, our logical relations
handle higher-order state, and this complicates the models
substantially; we believe we are the first to do so in the
context of IFC.

Our models are based on the now-standard step-indexed
Kripke logical relations [18], which have been used exten-
sively for showing the soundness of program verification
logics. Our model for FG is directly inspired by Cicek et
al.’s model for a pure calculus of incremental programs [20].
That calculus does not include state, but the model is struc-
turally very similar to our model of FG in that it also uses
a unary and a binary relation that interact at labeled types.
Extending that model with state was a significant amount of
work, since we had to introduce Kripke worlds. Our model
for CG has no direct predecessor; we developed it using
ideas from our model of FG. (DCC is also coarse-grained
and uses a labeled monad to track dependencies, but its
model is quite different from ours in the treatment of the
monadic type.)

Language translations that care about IFC. Language
translations that preserve information flow properties appear
in the DCC paper. The translations start from SLam’s pure
fragment and the type system of Volpano, Irvine and Smith
and go into DCC. The paper also shows how to recover the
noninterference theorem of the source of a translation from
properties of the target, a theorem we also prove for our
translations. Barthe et al. [19] describe a compilation from
a high-level imperative language to a low-level assembly-
like language. They show that their compilation is type and
semantics preserving. They also derive noninterference for
the source from the noninterference of the target. Fournet
and Rezk [23] describe a compilation from an IFC-typed
language to a low-level language where confidentiality and
integrity are enforced using cryptography. They prove that
well-typed source programs compile to noninterfering target
programs, where the target noninterference is defined in

a computational sense. Algehed and Russo [24] define an
embedding of DCC into Haskell. They also consider an ex-
tension of DCC with state but, to the best of our knowledge,
they do not prove any formal properties of the translation.

6. Conclusion

This paper has examined the question of whether infor-
mation flow type systems that label at fine granularity and
those that label at coarse granularity are equally expressive.
We answer this question in the affirmative, assuming that
the coarse-grained type system has a construct to limit the
scope of the taint label. A more foundational contribution
of our work is a better understanding of semantic models
of information flow types. To this end, we have presented
logical relations models of types in both the fine-grained and
the coarse-grained settings, for calculi with mutable higher-
order state.

Acknowledgments. This work was partly supported by
the German Science Foundation (DFG) through the project
“Information Flow Control for Browser Clients – IFC4BC”
in the priority program “Reliably Secure Software Systems
– RS3”, and also through the Collaborative Research Center
“Methods and Tools for Understanding and Controlling
Privacy” (SFB 1223). We thank our anonymous reviewers
and anonymous shepherd for their helpful feedback.

References

[1] T. H. Austin and C. Flanagan, “Efficient purely-dynamic information
flow analysis,” in Proceedings of the ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security, (PLAS), 2009.

[2] ——, “Permissive dynamic information flow analysis,” in Proceed-
ings of the ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security, (PLAS), 2010.

[3] F. Pottier and V. Simonet, “Information flow inference for ML,” ACM
Transactions on Programming Languages and Systems (TOPLAS),
vol. 25, no. 1, 2003.

[4] D. M. Volpano, C. E. Irvine, and G. Smith, “A sound type system
for secure flow analysis,” Journal of Computer Security (JCS), vol. 4,
no. 2/3, 1996.

[5] A. C. Myers and B. Liskov, “Protecting privacy using the decentral-
ized label model,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 9, no. 4, 2000.

[6] N. Broberg, B. Delft, and D. Sands, “Paragon for practical program-
ming with information-flow control,” in Proceedings of the Asian
Symposium on Programming Languages and Systems (APLAS), 2013.

[7] N. Heintze and J. G. Riecke, “The SLam calculus: Programming with
secrecy and integrity,” in Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 1998.

[8] A. A. Matos and G. Boudol, “On declassification and the non-
disclosure policy,” Journal of Computer Security (JCS), vol. 17, no. 5,
2009.

[9] G. Boudol, “Secure information flow as a safety property,” in Inter-
national Workshop on Formal Aspects in Security and Trust (FAST),
2008.

[10] P. Buiras, D. Vytiniotis, and A. Russo, “HLIO: Mixing static and
dynamic typing for information-flow control in Haskell,” in Proceed-
ings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP), 2015.

[11] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke, “A core calcu-
lus of dependency,” in Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 1999.

[12] J. A. Goguen and J. Meseguer, “Security policies and security mod-
els,” in Proceedings of the IEEE Symposium on Security and Privacy,
1982.

[13] M. Felleisen, “On the expressive power of programming languages,”
Science of Computer Programming, vol. 17, no. 1-3, 1991.

[14] S. Hunt and D. Sands, “On flow-sensitive security types,” in Pro-
ceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), 2006.

[15] V. Rajani, I. Bastys, W. Rafnsson, and D. Garg, “Type systems
for information flow control: The question of granularity,” SIGLOG
News, vol. 4, no. 1, 2017.

[16] A. Sabelfeld and D. Sands, “A PER model of secure information flow
in sequential programs,” in Proceedings of the European Symposium
on Programming Languages and Systems (ESOP), 1999.

[17] H. Mantel, D. Sands, and H. Sudbrock, “Assumptions and guaran-
tees for compositional noninterference,” in Proceedings of the IEEE
Computer Security Foundations Symposium (CSF), 2011.

[18] A. Ahmed, D. Dreyer, and A. Rossberg, “State-dependent represen-
tation independence,” in Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 2009.

[19] G. Barthe, T. Rezk, and A. Basu, “Security types preserving compi-
lation,” Computer Languages, Systems & Structures (CLSS), vol. 33,
no. 2, 2007.

[20] E. Çiçek, Z. Paraskevopoulou, and D. Garg, “A type theory for
incremental computational complexity with control flow changes,”
in Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP), 2016.

[21] A. J. Ahmed, “Step-indexed syntactic logical relations for recursive
and quantified types,” in Proceedings of the European Symposium on
Programming Languages and Systems (ESOP), 2006.

[22] E. Moggi, “Notions of computation and monads,” Information and
Computation, vol. 93, no. 1, 1991.

[23] C. Fournet and T. Rezk, “Cryptographically sound implementations
for typed information-flow security,” in Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 2008.

[24] M. Algehed and A. Russo, “Encoding DCC in Haskell,” in Proceed-
ings of the ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security, (PLAS), 2017.

	Introduction
	The Two Type Systems
	The fine-grained type system, FG
	Semantic model of FG

	The coarse-grained type system, CG
	Semantic model of CG

	Translations
	Translating FG to CG
	Translating CG to FG

	Discussion
	Related work
	Conclusion
	References

