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This paper presents 𝜆-amor, a new type-theoretic framework for amortized cost analysis of higher-order
functional programs and shows that existing type systems for cost analysis can be embedded in it. 𝜆-amor
introduces a new modal type for representing potentials – costs that have been accounted for, but not yet
incurred, which are central to amortized analysis. Additionally, 𝜆-amor relies on standard type-theoretic
concepts like affineness, refinement types and an indexed cost monad. 𝜆-amor is proved sound using a rather
simple logical relation. We embed two existing type systems for cost analysis in 𝜆-amor showing that, despite
its simplicity, 𝜆-amor can simulate cost analysis for different evaluation strategies (call-by-name and call-
by-value), in different styles (effect-based and coeffect-based), and with or without amortization. One of the
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1 INTRODUCTION
Cost analysis is the static verification of an upper bound on the evaluation cost of a program,
measured in some abstract unit such as the number of reduction steps, the number of function calls
or the number of case analyses during the execution of a program.1 Cost analysis is a well-studied
topic. Of interest to us in this paper are type systems for cost analysis, many of which exist [Avanzini
and Dal Lago 2017; Çiçek et al. 2017; Crary andWeirich 2000; Dal Lago and Gaboardi 2011; Dal Lago
and Petit 2012; Danner et al. 2015; Girard et al. 1992; Handley et al. 2020; Hoffman 2011; Hoffmann
et al. 2011, 2017; Hoffmann and Hofmann 2010; Hofmann and Jost 2003; Jost et al. 2010, 2009, 2017;
Kavvos et al. 2020; Knoth et al. 2019].

∗Vineet Rajani is now a post-doctoral researcher at the Max Planck Institute for Security and Privacy but this work was
mostly done while he was a graduate student at the Max Planck Institute for Software Systems and Saarland University.
1Cost analysis can also be used to establish lower bounds but, here, as in most prior work, the focus is on upper bounds.

Authors’ addresses: Vineet Rajani, Max Planck Institute for Security and Privacy, Germany, vineet.rajani@csp.mpg.de; Marco
Gaboardi, Boston University, USA, gaboardi@bu.edu; Deepak Garg, Max Planck Institute for Software Systems, Saarland
Informatics Campus, Germany, dg@mpi-sws.org; Jan Hoffmann, Carnegie Mellon University, USA, jhoffmann@cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
2475-1421/2021/1-ART27
https://doi.org/10.1145/3434308

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 27. Publication date: January 2021.

https://doi.org/10.1145/3434308
https://doi.org/10.1145/3434308


27:2 Vineet Rajani, Marco Gaboardi, Deepak Garg, and Jan Hoffmann

Despite the common theme of cost analysis, these type systems vary along a number of axes.
First, they cover different evaluation strategies like call-by-value and call-by-name, which result in
very different cost models. Second, they vary in how the type system tracks costs. Most commonly
and perhaps most intuitively, cost is tracked as an effect in the type system [Avanzini and Dal Lago
2017; Çiçek et al. 2017; Crary and Weirich 2000; Danner et al. 2015; Handley et al. 2020; Hoffman
2011; Hoffmann et al. 2011, 2017; Hoffmann and Hofmann 2010; Hofmann and Jost 2003; Jost et al.
2010, 2009, 2017; Kavvos et al. 2020; Knoth et al. 2019]. To a first approximation, a cost effect can be
thought of as an additional output of the program – a quantitative value representing the cost of
computing the usual output. Interestingly, other work [Dal Lago and Gaboardi 2011; Dal Lago and
Petit 2012; Girard et al. 1992] treats cost as a coeffect. To the best of our knowledge, coeffect-based
tracking of cost was introduced in Bounded Linear Logic (BLL) [Girard et al. 1992]. The key idea of
coeffect-based cost analysis is to represent cost as a requirement on the context (a coeffect) instead
of an additional output (an effect). BLL computes cost by tracking the number of times each variable
is used (a coeffect) in an affine type system and is limited to polynomial costs. Subsequent work
generalizes the idea of coeffect-based cost analysis to not just non-polynomial costs but also to
other quantitative measures besides cost [Brunel et al. 2014; Dal Lago and Gaboardi 2011; Dal Lago
and Petit 2012; Gaboardi et al. 2016; McDermott and Mycroft 2018; Petricek et al. 2014, 2013].
Third, prior work varies in whether it supports only standard (worst-case) cost analysis or

also amortized cost analysis. Amortized cost analysis is useful for stateful data structures where
certain operation invocations pay a huge cost to change the internal state in a way that reduces
the cost of subsequent invocations [Tarjan 1985]. In these cases, it is not very useful to compute
the worst-case cost of an individual operation; instead, one wants to compute an upper bound on
the cost of a sequence of 𝑛 operations for large 𝑛. This is called amortized cost analysis. Standard
textbook examples that rely on amortized cost analysis are a FIFO queue implemented using a pair
of functional (LIFO) lists, Fibonacci heaps and the union-find data structure with path compression.

Research question. Given this diversity in type systems for cost analysis, a natural question
is whether one can build a unifying framework that can embed type systems covering different
evaluation strategies, effect- and coeffect-based cost tracking, and amortized cost analysis. Note
that this is unlikely to be a trivial exercise particularly because the effect- and coeffect-based styles
of cost tracking are quite different.
In this paper, we answer this question in the affirmative. We build a new type theory, called

𝜆-amor, that is somewhat minimal but can embed type systems covering call-by-value and call-by-
name evaluation, effect- and coeffect-based cost tracking, and amortized costs. Hence, 𝜆-amor is a
unifying framework in the sense described above.

Overview of 𝜆-amor. To motivate 𝜆-amor’s design, we start by describing the typical structure
of amortized cost analysis through the so-called method of potentials [Tarjan 1985]. Consider a
data structure with internal state and suppose that the cost of an operation on the data structure
depends on this state, so it varies. We say that the amortized cost of an operation is 𝑐 if the cost
of 𝑛 consecutive operations is upper-bounded by 𝑛 · 𝑐 . To prove this, we find a function 𝜙 that
maps the state 𝑠 of the data structure to a non-negative number, called a potential, and show (using
a type-theory like 𝜆-amor) that an invocation of the operation that changes the data structure
from state 𝑠𝑖 to 𝑠𝑖+1 has a cost upper-bounded by 𝜙 (𝑠𝑖 ) − 𝜙 (𝑠𝑖+1) + 𝑐 . It immediately follows that
a sequence of 𝑛 operations starting in state 𝑠0 with 𝜙 (𝑠0) = 0 has a total cost upper-bounded by
(𝜙 (𝑠0)−𝜙 (𝑠1) +𝑐) + ...+ (𝜙 (𝑠𝑛−1)−𝜙 (𝑠𝑛) +𝑐). This is a telescopic series that equals 𝜙 (𝑠0)−𝜙 (𝑠𝑛) +𝑛 ·𝑐 ,
which in turn is upper-bounded by 𝑛 · 𝑐 since 𝜙 (𝑠0) = 0 and 𝜙 (𝑠𝑛) is non-negative. Hence, the cost
of the 𝑛 operations is no more than 𝑐 , as required. The value 𝜙 (𝑠) is called the potential associated
with the state 𝑠 . This potential is needed for verification only, i.e., it is ghost state and it does not
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exist at run time. The type theory is used to prove only that the cost of an individual operation is
upper-bounded by 𝜙 (𝑠𝑖 ) − 𝜙 (𝑠𝑖+1) + 𝑐 (the rest is trivial).
Based on this intuition, we describe the requirements for a type theory to support amortized

cost analysis, and how 𝜆-amor satisfies these requirements.
R1) The type theory must include some construct to associate the ghost potential to the type of a

data structure. To this end, 𝜆-amor introduces a new type constructor written [𝑝] 𝜏 , which
ascribes a value of type 𝜏 with associated potential 𝑝 . Here, 𝑝 is a non-negative number.

R2) Since the potential 𝑝 is related to the state 𝑠 (𝑝 equals 𝜙 (𝑠)), the type 𝜏 of the data structure
must reflect its state to sufficient precision, to allow relating 𝑝 and 𝜏 meaningfully. 𝜆-amor
uses standard refinement types [Xi 2007] for this. For instance, 𝐿𝑛 𝜏 is the type of lists of
length 𝑛, and [2𝑛] (𝐿𝑛 𝜏) is the type of lists of length 𝑛 with associated potential 2𝑛. Note
how the refinement 𝑛 relates an aspect of the state, the length of the list, to the potential
associated with the list.

R3) The type theory must be able to represent execution costs since we need to establish upper
bounds on them. As mentioned above, we can choose to represent costs as an effect or as a
coeffect. Upfront, 𝜆-amor represents cost as an effect: It includes an indexed monadM𝜅 𝜏 to
represent a computation of type 𝜏 and cost 𝜅. However, we show that coeffect-based cost
analysis can be simulated in 𝜆-amor using a combination of effects and potentials. To the best
of our knowledge, this simulation of coeffect-based analysis in effect-based analysis using
potentials is a completely new result.

R4) The type theory must prevent the duplication of any type that has a potential associated with
it, otherwise the type theorywould not be sound. For example, if a typing derivation duplicates
the potential 𝜙 (𝑠𝑖 ) even once, then the operation’s real cost may be up to 2 ·𝜙 (𝑠𝑖 ) −𝜙 (𝑠𝑖+1) +𝑐 ,
and the amortized analysis described earlier breaks completely. Hence, all potential-carrying
types must be treated affinely in the type theory. Accordingly, 𝜆-amor is an affine type theory
with the usual operators of affine logic like ⊗, & and ⊕. Duplicable resources are explicitly
represented using the standard exponential ! of affine logic. To improve expressiveness, we
allow the exponential ! to be indexed, following the dependent sub-exponential of Bounded
Linear Logic [Girard et al. 1992].

Overall, 𝜆-amor can be seen as a computational 𝜆-calculus (in the sense of Moggi [Moggi 1991])
equipped with a type system that has the four features mentioned above – the construct [𝑝] 𝜏
to associate potential to a type, type refinements, the indexed cost monadM𝜅 𝜏 , and affineness
with an indexed sub-exponential !.2 We give the pure (non-monadic) part of 𝜆-amor a call-by-name
semantics with eager evaluation for all pairs and sums. However, as shown by Moggi [1991],
simulating call-by-value semantics in a monadic setting is not difficult, a fact we exploit for our
embedding of call-by-value cost analysis in 𝜆-amor later.
𝜆-amor is conceptually very simple. We prove it sound using an elementary logical relation that

extends Pym’s semantics of BI [Pym et al. 2004]. The key novelty in building this relation is the
treatment of potentials, and their interaction with the cost monad (available potential can offset
the cost in the monad).

𝜆-amor as a unifying framework. We show that 𝜆-amor is unifying in the sense described earlier
by embedding two state-of-the-art frameworks for (amortized) cost analysis faithfully in 𝜆-amor.
Our first embedding is that of a core calculus for Resource-aware ML or RAML [Hoffman 2011;
Hoffmann and Hofmann 2010], an implemented, effect-based framework for amortized cost analysis

2The name “𝜆-amor” refers to both the calculus and its type system. The intended use can be disambiguated from the
context.
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of ML programs. RAML is call-by-value, so this embedding shows how (amortized) call-by-value
cost analysis can be simulated in 𝜆-amor.
Our second embedding is that of 𝑑ℓPCF [Dal Lago and Gaboardi 2011], a coeffect-based type

system for non-amortized cost analysis of call-by-name PCF programs. Unlike the first embedding
(of RAML), which is relatively easy, this embedding is surprising and difficult, as it simulates
𝑑ℓPCF’s coeffects using 𝜆-amor’s potentials and effects.

Together, the two embeddings cover call-by-value and call-by-name evaluation, effect- and
coeffect-based cost tracking, and amortized cost analysis, thus fulfilling our goal of “unifying”.
The embedding of 𝑑ℓPCF also shows that 𝜆-amor is very expressive. Dal Lago and Gaboardi

[2011] showed that𝑑ℓPCF is relatively complete for PCF programs, meaning that every PCF program
can be typed with precise cost in it.3 Hence, our embedding of 𝑑ℓPCF in 𝜆-amor shows that 𝜆-amor
is also relatively complete for PCF programs.

Added expressiveness relative to prior work on amortized analysis. Besides being a unifying frame-
work for cost analysis as just described, 𝜆-amor also improves the expressiveness of prior type
systems for amortized cost analysis with the method of potentials. The main line of work here is
RAML and its variants [Hoffmann et al. 2011, 2017; Hoffmann and Hofmann 2010; Hofmann and
Jost 2003; Jost et al. 2010]. However, this line of work fulfills requirements R1 and R4 only partially
– potential can be associated only with first-order types and functions are non-affine. As a result,
RAML has difficulty in handling the interaction between higher-order values and potential. To
understand the issue, consider a curried function of two arguments, of which the first argument
carries potential that offsets the cost of executing the function. Suppose that this function is applied
partially. The resulting closure must not be duplicable because it captures the potential from the
first argument. However, since RAML (and its many extensions) do not treat functions affinely,
they cannot type check such programs. For instance, RAML extensions like [Hoffmann et al. 2017]
completely exclude the handling of curried functions while others like [Jost et al. 2010] can type
check only those curried functions where potential is limited to the last argument. In contrast,
𝜆-amor, being fully affine, can handle such examples trivially.

Additionally, RAML and its variants do not support polymorphism over costs in full generality,
which limits their expressiveness. For example, RAML cannot represent the cost of a standard list
fold function precisely when the cost of the binary operator passed as an argument to fold varies
depending on its arguments. In contrast, 𝜆-amor has full cost polymorphism and can type such a
fold function, as we show in Section 3.3.

Organization. To simplify the presentation, we describe 𝜆-amor in two stages. First, we describe
𝜆-amor without indexing on exponentials (Section 2). This suffices for most examples (Section 3)
and the embedding of RAML (Section 4), but not the embedding of 𝑑ℓPCF. Then, we introduce the
full 𝜆-amor by adding indexed exponentials (Section 5) and show how to embed 𝑑ℓPCF (Section 6).
We compare to related work in Section 7. The full technical development with proofs of all theorems
and further examples can be found in a technical appendix available from author’s homepages.

Limitations and scope. Our focus in this paper is on the foundations of a unifying type theory
for (amortized) cost analysis. An implementation of the type theory is beyond the scope of this
paper, even though in restricted settings like polynomial-time analysis, one could use ideas from
prior work like RAML to implement the type theory efficiently (we are working on such an
implementation). Further, we focus only on the cost of non-reusable resources like time. The cost
of reusable resources like heap space is not within the scope of this paper. Finally, we do not
consider call-by-need evaluation (lazy evaluation with sharing), as in the work of Danielsson
3The adjective “relative” means relative to having a refinement domain that is sufficiently expressive.
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Types 𝜏 ::= 1 | b | 𝜏1 ⊸ 𝜏2 | 𝜏1 ⊗ 𝜏2 | 𝜏1 & 𝜏2 | 𝜏1 ⊕ 𝜏2 | !𝜏 | [𝑝] 𝜏 | M𝜅 𝜏 | 𝐿𝑛 𝜏
𝛼 | ∀𝛼 : K.𝜏 | ∀𝑖 : S.𝜏 | 𝜆𝑡 𝑖 : S.𝜏 | 𝜏 𝐼 | ∃𝑖 : S.𝜏 | 𝐶 ⇒ 𝜏 | 𝐶&𝜏

Expressions 𝑒 ::= 𝑣 | 𝑥 | 𝑒1 𝑒2 | ⟨⟨𝑒1, 𝑒2⟩⟩ | let⟨⟨𝑥,𝑦⟩⟩ = 𝑒1 in 𝑒2 | fix𝑥 .𝑒 |
⟨𝑒, 𝑒⟩ | fst(𝑒) | snd(𝑒) | inl(𝑒) | inr(𝑒) | case 𝑒, 𝑥 .𝑒,𝑦.𝑒 |
let !𝑥 = 𝑒1 in 𝑒2 | 𝑒 :: 𝑒 | (match 𝑒 with |nil ↦→ 𝑒1 |ℎ :: 𝑡 ↦→ 𝑒2) | 𝑒 [] |
xlet𝑥 = 𝑒1 in 𝑒2 | clet𝑥 = 𝑒1 in 𝑒2

Values 𝑣 ::= () | 𝑐 | 𝜆𝑥 .𝑒 | ⟨⟨𝑣1, 𝑣2⟩⟩ | ⟨𝑣, 𝑣⟩ | inl(𝑒) | inr(𝑒) | ! 𝑒 | nil |
Λ.𝑒 | ret 𝑒 | bind𝑥 = 𝑒1 in 𝑒2 | ↑𝜅 | release𝑥 = 𝑒1 in 𝑒2 | store 𝑒

Indices 𝐼 , 𝐽 , 𝜅, 𝑝, 𝑛 ::= 𝑖 | 𝑁 | 𝑅+ | 𝐼 + 𝐼 | 𝐼 − 𝐼 | ∑𝑎<𝐽 𝐼 | 𝜆𝑠𝑖 : S.𝐼 | 𝐼 𝐼
Constraints 𝐶 ::= 𝐼 = 𝐼 | 𝐼 < 𝐼 | 𝐶 ∧ 𝐶
Sorts S ::= N | R+ | S → S
Kinds K ::= 𝑇𝑦𝑝𝑒 | S → K

Fig. 1. 𝜆-amor−’s syntax

[2008]; Jost et al. [2017]; Okasaki [1996]. Call-by-need is very hard to simulate without imperative
state (which we do not include in 𝜆-amor) and, additionally, amortized analysis for call-by-need
does not require affineness. Consequently, unifying work on cost analysis for call-by-need with
that for call-by-value or call-by-name will require a significant amount of further work. We also
do not consider call-by-push-value (CBPV) evaluation, although we believe that CBPV is actually
within reach – we would need to give 𝜆-amor a CBPV semantics instead of its current monadic
semantics.

Other related work. We wish to note that, besides type systems for cost analysis, there is also
work on program logics for (amortized) cost analysis [Carbonneaux et al. 2015; Charguéraud and
Pottier 2019; Mével et al. 2019]. Some of this work, e.g., [Mével et al. 2019] could be made more
expressive than our type theory (by adding an expressive language of costs), but this line of work
does not attempt to unify existing frameworks for cost analysis, which is our primary objective
here. We could have chosen Mével et al. [2019] as the base of our work and used that in place of
𝜆-amor as the target of our embeddings, but we chose to design 𝜆-amor because we believe that our
design is considerably less complex. 𝜆-amor focuses only on cost analysis. In contrast, Mével et al.
[2019] add cost analysis to a framework for full functional verification, which is really orthogonal
to our goal here.

2 𝜆-amor− (NO SUB-EXPONENTIALS)
To simplify the presentation, we first describe 𝜆-amor−, the subset of 𝜆-amor that only considers
the standard exponential ! from affine logic, without any indexing (that 𝜆-amor supports).

2.1 Syntax and Semantics
The syntax of 𝜆-amor− is shown in Fig. 1. We describe the various syntactic categories below.

Indices, sorts, kinds and constraints. 𝜆-amor− is a refinement type system. (Static) indices, à la
DML [Xi 2007], are used to track information like list lengths, computation costs and potentials.
These indices can be natural or positive real numbers, with support for addition and subtraction.
There is also a function to obtain a bounded sum (

∑
𝑎<𝐽 𝐼 ) over indices. It basically describes

summation of 𝐼 with 𝑎 ranging from 0 to 𝐽 − 1 inclusive, i.e., 𝐼 [0/𝑎] + . . . + 𝐼 [𝐽 − 1/𝑎]. Besides this,
we also have index-level functions and index-level function application. List lengths are represented
using natural numbers (sort N). Potentials and costs are both represented using non-negative real
numbers (sort R+). 𝜆-amor− also features kinds, denoted by K. 𝑇𝑦𝑝𝑒 is the kind of standard affine
types and S → K represents a kind family indexed by the sort S. Finally, constraints (denoted by 𝐶)
are predicates (=, <,∧) over indices.
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Forcing reduction, 𝑒 ⇓𝜅 𝑣

𝑒 ⇓ 𝑣
ret 𝑒 ⇓0 𝑣

E-return
𝑒1 ⇓ 𝑣1 𝑣1 ⇓𝜅1 𝑣 ′1 𝑒2 [𝑣 ′1/𝑥] ⇓ 𝑣2 𝑣2 ⇓𝜅2 𝑣 ′2

bind𝑥 = 𝑒1 in 𝑒2 ⇓𝜅1+𝜅2 𝑣 ′2
E-bind

↑𝜅 ⇓𝜅 ()
E-tick

𝑒1 ⇓ 𝑣1 𝑒2 [𝑣1/𝑥] ⇓ 𝑣2 𝑣2 ⇓𝜅 𝑣 ′2
release𝑥 = 𝑒1 in 𝑒2 ⇓𝜅 𝑣 ′2

E-release
𝑒 ⇓ 𝑣

store 𝑒 ⇓0 𝑣
E-store

Fig. 2. Selected evaluation rules

Types. 𝜆-amor− is an affine type system. The most important type is the modal type [𝑝] 𝜏 , which
ascribes values of type 𝜏 that have potential 𝑝 associated with them (as a ghost). We have the
multiplicative unit type (denoted 1) and an abstract base type (denoted b) to represent types like
integers or booleans. Then, there are standard affine types – affine function spaces (⊸), sums
(⊕), pairs (both the multiplicative ⊗ and the additive &) and the exponential (!), which ascribes
expressions that can be duplicated. We include only one representative data type – the length-
refined list type 𝐿𝑛𝜏 , where the length 𝑛 is drawn from the language of indices (described earlier).
Other data types can be added if needed.
𝜆-amor− also has universal quantification over types and indices denoted by ∀𝛼 : K.𝜏 and ∀𝑖 : S.𝜏 ,

respectively, and existential quantification over indices, denoted ∃𝑖 : S.𝜏 . Quantification over indices
comes in quite handy for representing variable cost of function arguments (as we exemplify in our
encoding of Church numerals in Section 3.2). The constraint type 𝐶 ⇒ 𝜏 means that if constraint
𝐶 holds then the underlying term has the type 𝜏 . The dual type 𝐶&𝜏 means that the constraint
𝐶 holds and the type of the underlying term is 𝜏 . For instance, the type of non-empty lists can
be written as ∃𝑛. (𝑛 > 0)&(𝐿𝑛𝜏). We also have sort-indexed type families, which are type-level
functions from sorts to kinds.
Finally, 𝜆-amor− has the monadic typeM𝜅 𝜏 , which represents computations of cost at most 𝜅.

Technically, M𝜅 𝜏 is a graded or indexed monad [Gaboardi et al. 2016]. A non-zero cost can be
incurred only by an expression of the monadic type. Following standard convention we call such
expressions impure, while expressions of all other types are called pure.

Expressions and values. There are term-level constructors for all types (in the kind 𝑇𝑦𝑝𝑒) except
for the modal type ([𝑝] 𝜏). The inhabitants of type [𝑝] 𝜏 are exactly those of type 𝜏 since the
potential is ghost state without a runtime manifestation.

We describe the expression and value forms for some of the types. The term-level constructors
for the constraint type (𝐶 ⇒ 𝜏), type and index-level quantification (∀𝛼 : K.𝜏 , ∀𝑖 : S.𝜏) are all
denoted Λ.𝑒 . (Note that indices, types and constraints do not occur in terms.) We also have a fixpoint
operator (fix) which is used to encode recursion.
The monadic type M𝜅 𝜏 has several term constructors, including the standard monadic unit

(ret 𝑒) and bind (bind𝑥 = 𝑒1 in 𝑒2). The construct store 𝑒 stores potential with a term and is the
introduction form of the type [𝑝] 𝜏 . Dually, release𝑥 = 𝑒1 in 𝑒2 releases potential stored with 𝑒1
and makes it available to offset the cost of 𝑒2. Note that store 𝑒 and release𝑥 = 𝑒1 in 𝑒2 are useful
only for the type system: they indicate ghost operations, i.e., where potentials should be stored
and released, respectively. Operationally, they are uninteresting: store 𝑒 evaluates exactly like ret 𝑒 ,
while release𝑥 = 𝑒1 in 𝑒2 evaluates exactly like bind𝑥 = 𝑒1 in 𝑒2. Finally, we have a construct for
incurring non-zero cost – the “tick” construct denoted ↑𝜅 . This construct indicates that cost 𝜅 is
incurred where it is placed. Programmers place the construct at appropriate points in a program to
model costs incurred during execution, as in prior work [Danielsson 2008].
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Typing judgment: Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏

Ψ;Θ;Δ;Ω; Γ1 ⊢ 𝑒1 : 𝜏1 Ψ;Θ;Δ;Ω; Γ2 ⊢ 𝑒2 : 𝜏1
Ψ;Θ;Δ;Ω; Γ1 + Γ2 ⊢ ⟨⟨𝑒1, 𝑒2⟩⟩ : (𝜏1 ⊗ 𝜏2)

T-tensorI

Ψ;Θ;Δ;Ω; Γ1 ⊢ 𝑒 : (𝜏1 ⊗ 𝜏2) Ψ;Θ;Δ;Ω; Γ2, 𝑥 : 𝜏1, 𝑦 : 𝜏2 ⊢ 𝑒 ′ : 𝜏
Ψ;Θ;Δ;Ω; Γ1 + Γ2 ⊢ let⟨⟨𝑥,𝑦⟩⟩ = 𝑒 in 𝑒 ′ : 𝜏

T-tensorE

Ψ;Θ;Δ;Ω; . ⊢ 𝑒 : 𝜏
Ψ;Θ;Δ;Ω; . ⊢ !𝑒 : !𝜏

T-ExpI
Ψ;Θ;Δ;Ω; Γ1 ⊢ 𝑒 : !𝜏 Ψ;Θ;Δ;Ω, 𝑥 : 𝜏 ; Γ2 ⊢ 𝑒 ′ : 𝜏 ′

Ψ;Θ;Δ;Ω; Γ1 + Γ2 ⊢ let !𝑥 = 𝑒 in 𝑒 ′ : 𝜏 ′
T-ExpE

Ψ;Θ;Δ;Ω, 𝑥 : 𝜏 ; . ⊢ 𝑒 : 𝜏
Ψ;Θ;Δ;Ω; . ⊢ fix𝑥 .𝑒 : 𝜏

T-fix

Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏 Ψ;Θ;Δ ⊢ Γ′ ⊑ Γ Ψ;Θ;Δ ⊢ Ω′ ⊑ Ω Ψ;Θ;Δ ⊢ 𝜏 <: 𝜏 ′

Ψ;Θ;Δ;Ω′; Γ′ ⊢ 𝑒 : 𝜏 ′
T-weaken

Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏
Ψ;Θ;Δ;Ω; Γ ⊢ ret 𝑒 : M 0𝜏

T-ret

Ψ;Θ;Δ;Ω; Γ1 ⊢ 𝑒1 : M𝜅1 𝜏1
Ψ;Θ;Δ;Ω; Γ2, 𝑥 : 𝜏1 ⊢ 𝑒2 : M𝜅2 𝜏2

Θ ⊢ 𝜅1 : R+ Θ ⊢ 𝜅2 : R+

Ψ;Θ;Δ;Ω; Γ1 + Γ2 ⊢ bind𝑥 = 𝑒1 in 𝑒2 : M(𝜅1 + 𝜅2) 𝜏2
T-bind

Θ ⊢ 𝜅 : R+

Ψ;Θ;Δ;Ω; Γ ⊢ ↑𝜅 : M𝜅 1
T-tick

Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏 Θ ⊢ 𝑝 : R+

Ψ;Θ;Δ;Ω; Γ ⊢ store 𝑒 : M𝑝 ( [𝑝] 𝜏)
T-store

Ψ;Θ;Δ;Ω; Γ1 ⊢ 𝑒1 : [𝑝1] 𝜏1 Ψ;Θ;Δ;Ω; Γ2, 𝑥 : 𝜏1 ⊢ 𝑒2 : M(𝑝1 + 𝑝2) 𝜏2
Θ ⊢ 𝑝1 : R+ Θ ⊢ 𝑝2 : R+

Ψ;Θ;Δ;Ω; Γ1 + Γ2 ⊢ release𝑥 = 𝑒1 in 𝑒2 : M𝑝2 𝜏2
T-release

Fig. 3. Selected typing rules for 𝜆-amor−

Operational semantics. 𝜆-amor− is a call-by-name calculus with eager evaluation.4 We use two
evaluation judgments – pure and forcing. The pure evaluation judgment (𝑒 ⇓ 𝑣) relates an expression
𝑒 to the value 𝑣 it evaluates to. All monadic expressions are treated as values in the pure evaluation.
The rules for pure evaluation are standard so we defer them to the technical appendix. The forcing
evaluation judgment 𝑒 ⇓𝜅 𝑣 is a relation between terms of typeM𝜅 𝜏 and values of type 𝜏 . 𝜅 is the
cost incurred in executing (forcing) 𝑒 . The rules of this judgment are shown in Fig. 2. E-return states
that if 𝑒 reduces to 𝑣 in the pure reduction, then ret 𝑒 forces to 𝑣 with 0 cost. E-store is exactly like
E-return, emphasizing the ghost nature of potential annotations in types. E-bind is the standard
monadic composition of 𝑒1 with 𝑒2. The effect (cost) of bind is the sum of the costs of forcing 𝑒1 and
𝑒2. E-release is similar. ↑𝜅 is the only cost-consuming construct in the language. E-tick says that ↑𝜅
forces to () and it incurs cost 𝜅.

2.2 Type system
The typing judgment of 𝜆-amor− is written Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏 . Here, Ψ is a context mapping
type-level variables to their kinds, Θ is a context mapping index-level variables to their sorts, Δ is
a context of constraints on the index variables, and Ω and Γ are the non-affine and affine typing
4Perhaps somewhat surprisingly, even additive (&) pairs are evaluated eagerly. However, since all effects are confined to a
monad, this choice does not matter. ! is lazy as in a standard affine 𝜆-calculus.
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Ψ;Θ;Δ ⊢ 𝜏 <: 𝜏 ′ Ψ;Θ;Δ ⊢ 𝑝 ′ ≤ 𝑝

Ψ;Θ;Δ ⊢ [𝑝] 𝜏 <: [𝑝 ′] 𝜏 ′
sub-potential

Ψ;Θ;Δ ⊢ 𝜏 <: 𝜏 ′ Ψ;Θ;Δ ⊢ 𝜅 ≤ 𝜅 ′

Ψ;Θ;Δ ⊢ M𝜅 𝜏 <: M𝜅 ′ 𝜏 ′
sub-monad

Θ ⊢ 𝑝 : R+ Θ ⊢ 𝑝 ′ : R+

Ψ;Θ;Δ ⊢ [𝑝] (𝜏1 ⊸ 𝜏2) <: ( [𝑝 ′] 𝜏1 ⊸ [𝑝 ′ + 𝑝] 𝜏2)
sub-potArrow

Ψ;Θ;Δ ⊢ 𝜏 <: [0] 𝜏
sub-potZero

Ψ;Θ, 𝑖 : S;Δ ⊢ 𝜏 <: 𝜏 ′

Ψ;Θ;Δ ⊢ 𝜆𝑡 𝑖 : S.𝜏 <: 𝜆𝑡 𝑖 : S.𝜏 ′
sub-familyAbs

Θ ⊢ 𝐼 : S
Ψ;Θ;Δ ⊢ (𝜆𝑡 𝑖 : S.𝜏) 𝐼 <: 𝜏 [𝐼/𝑖]

sub-familyApp1

Θ ⊢ 𝐼 : S
Ψ;Θ;Δ ⊢ 𝜏 [𝐼/𝑖] <: (𝜆𝑡 𝑖 : S.𝜏) 𝐼

sub-familyApp2

Fig. 4. Selected subtyping rules

contexts respectively, both mapping term-level variables to their types. We use the notation Γ1 + Γ2
to describe the disjoint union of the affine contexts Γ1 and Γ2. Selected typing rules are listed in
Fig. 3, and the full set of rules can be found in the technical appendix.
Rules for the affine type constructs of 𝜆-amor are standard. T-tensorI is the type rule for intro-

ducing the tensor pair ⟨⟨𝑒1, 𝑒2⟩⟩ – if 𝑒1 and 𝑒2 are typed 𝜏1 and 𝜏2 under affine contexts Γ1 and Γ2,
respectively, then ⟨⟨𝑒1, 𝑒2⟩⟩ is typed (𝜏1 ⊗ 𝜏2) under the context (Γ1 + Γ2). Dually, T-tensorE is the
type rule for eliminating the tensor pair – if expression 𝑒 has type (𝜏1 ⊗ 𝜏2) in the context Γ1 and a
continuation 𝑒 ′ is of type 𝜏 ′ in the context Γ2 plus both elements of the tensor pair (named 𝑥 and
𝑦 here), then the expression let⟨⟨𝑥,𝑦⟩⟩ = 𝑒 in 𝑒 ′ is of type 𝜏 ′ under the context (Γ1 + Γ2). T-expI
ascribes !𝑒 the type !𝜏 if 𝑒 can be ascribed the type 𝜏 under an empty affine context. The subtyping
relation (<:) used in the rule T-weaken is described below, but we skip describing the standard
details of the auxiliary relation ⊑, which is described in the technical appendix. T-expE is the rule
for the elimination form of !𝜏 . The important thing here is that the continuation 𝑒 ′ has unbounded
access to 𝑒 via the non-affine variable 𝑥 .

Rules for monadic types are interesting. T-ret types the return of the monad. In the operational
semantics, ret 𝑒 takes a well-typed expression and returns it with 0 cost. Hence, its typeM 0𝜏 also
includes 0 cost. T-bind types the monadic bind, which basically sequences two computations. The
cost in the type of the bind is the sum of the costs of the two computations, again mirroring the
operational semantics. T-tick type checks ↑𝜅 at typeM𝜅 1 – a monad of unit type with cost 𝜅.
T-store types store 𝑒 , which is used to associate potential with the expression 𝑒 . If 𝑒 has type 𝜏 ,

the rule gives store 𝑒 the typeM𝜅 ( [𝜅] 𝜏). Intuitively, if 𝜅 units of potential are attached to 𝑒 , then
the cost of doing so is 𝜅 units. Finally, T-release is dual to T-store: It uses the potential 𝑝1 stored
with the first expression 𝑒1 to reduce the cost of the continuation by the same amount.

Subtyping. Selected subtyping rules are shown in Fig. 4. As mentioned earlier, 𝜆-amor− also
has type-level functions and applications. Accordingly, we have subtyping rules to convert the
type-level application form ((𝜆𝑡 𝑖 : S.𝜏) 𝐼 ) to the substitution form (𝜏 [𝐼/𝑖]) and vice versa. Rule
sub-potArrow distributes potential on a function type over the argument and the return value.
sub-potZero allows silently casting an expression of type 𝜏 to type [0] 𝜏 . This reinforces the ghost
nature of potential. The subtyping of the modal type [𝑝] 𝜏 is contra-variant in the potential because
it is sound to throw away potential. The subtyping for the monadic type is covariant in both the
type and the cost (because the cost in the monadic type is an upper bound). There are additional,
standard typing rules for sorts and kinds, which we defer to the technical appendix.
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J1K ≜ {(𝑝,𝑇 , ())}
JbK ≜ {(𝑝,𝑇 , 𝑣) | 𝑣 ∈ JbK}
J𝐿0𝜏K ≜ {(𝑝,𝑇 , nil)}
J𝐿𝑠+1𝜏K ≜ {(𝑝,𝑇 , 𝑣 :: 𝑙) |∃𝑝1, 𝑝2 .𝑝1 + 𝑝2 ≤ 𝑝 ∧ (𝑝1,𝑇 , 𝑣) ∈ J𝜏K ∧ (𝑝2,𝑇 , 𝑙) ∈ J𝐿𝑠𝜏K}
J𝜏1 ⊗ 𝜏2K ≜ {(𝑝,𝑇 , ⟨⟨𝑣1, 𝑣2⟩⟩) | ∃𝑝1, 𝑝2 .𝑝1 + 𝑝2 ≤ 𝑝 ∧ (𝑝1,𝑇 , 𝑣1) ∈ J𝜏1K ∧ (𝑝2,𝑇 , 𝑣2) ∈ J𝜏2K}
J𝜏1 & 𝜏2K ≜ {(𝑝,𝑇 , ⟨𝑣1, 𝑣2⟩) | (𝑝,𝑇 , 𝑣1) ∈ J𝜏1K ∧ (𝑝,𝑇 , 𝑣2) ∈ J𝜏2K}
J𝜏1 ⊕ 𝜏2K ≜ {(𝑝,𝑇 , inl(𝑣)) | (𝑝,𝑇 , 𝑣) ∈ J𝜏1K} ∪ {(𝑝,𝑇 , inr(𝑣)) | (𝑝,𝑇 , 𝑣) ∈ J𝜏2K}
J!𝜏K ≜ {(𝑝,𝑇 , !𝑒) | (0,𝑇 , 𝑒) ∈ J𝜏KE }
J𝜏1 ⊸ 𝜏2K ≜ {(𝑝,𝑇 , 𝜆𝑥 .𝑒) | ∀𝑝 ′, 𝑒 ′,𝑇 ′<𝑇 .(𝑝 ′,𝑇 ′, 𝑒 ′) ∈ J𝜏1KE =⇒ (𝑝 + 𝑝 ′,𝑇 ′, 𝑒 [𝑒 ′/𝑥]) ∈ J𝜏2KE }
J[𝑛] 𝜏K ≜ {(𝑝,𝑇 , 𝑣) | ∃𝑝 ′.𝑝 ′ + 𝑛 ≤ 𝑝 ∧ (𝑝 ′,𝑇 , 𝑣) ∈ J𝜏K}}
JM𝜅 𝜏K ≜ {(𝑝,𝑇 , 𝑣) | ∀𝜅 ′, 𝑣 ′,𝑇 ′<𝑇 .𝑣 ⇓𝜅′

𝑇 ′ 𝑣
′ =⇒ ∃𝑝 ′.𝜅 ′ + 𝑝 ′ ≤ 𝑝 + 𝜅 ∧ (𝑝 ′,𝑇 −𝑇 ′, 𝑣 ′) ∈ J𝜏K}

J∀𝛼.𝜏K ≜ {(𝑝,𝑇 ,Λ.𝑒) | ∀𝜏 ′,𝑇 ′<𝑇 .(𝑝,𝑇 ′, 𝑒) ∈ J𝜏 [𝜏 ′/𝛼]KE }
J∀𝑖 .𝜏K ≜ {(𝑝,𝑇 ,Λ.𝑒) | ∀𝐼 ,𝑇 ′<𝑇 .(𝑝,𝑇 ′, 𝑒) ∈ J𝜏 [𝐼/𝑖]KE }
J𝐶 ⇒ 𝜏K ≜ {(𝑝,𝑇 ,Λ.𝑒) | . |= 𝐶 =⇒ (𝑝,𝑇 , 𝑒) ∈ J𝜏KE }
J𝐶&𝜏K ≜ {(𝑝,𝑇 , 𝑣) | . |= 𝐶 ∧ (𝑝,𝑇 , 𝑣) ∈ J𝜏K}
J∃𝑠 .𝜏K ≜ {(𝑝,𝑇 , 𝑣) | ∃𝑠 ′.(𝑝,𝑇 , 𝑣) ∈ J𝜏 [𝑠 ′/𝑠]K}
J𝜆𝑡 𝑖 .𝜏K ≜ 𝑓 where ∀𝐼 . 𝑓 𝐼 = J𝜏 [𝐼/𝑖]K
J𝜏 𝐼K ≜ J𝜏K 𝐼

J𝜏KE ≜ {(𝑝,𝑇 , 𝑒) | ∀ 𝑇 ′<𝑇, 𝑣 .𝑒 ⇓𝑇 ′ 𝑣 =⇒ (𝑝,𝑇 − 𝑇 ′, 𝑣) ∈ J𝜏K}

JΓKE ≜ {(𝑝,𝑇 ,𝛾) | ∃𝑓 : V𝑎𝑟𝑠 → P𝑜𝑡𝑠.
(∀𝑥 ∈ dom(Γ) . (𝑓 (𝑥),𝑇 ,𝛾 (𝑥)) ∈ JΓ(𝑥)KE ) ∧ (∑𝑥 ∈dom(Γ) 𝑓 (𝑥) ≤ 𝑝)}

JΩKE ≜ {(0,𝑇 , 𝛿) | (∀𝑥 ∈ dom(Ω) .(0,𝑇 , 𝛿 (𝑥)) ∈ J𝜏KE )}

Fig. 5. Model of 𝜆-amor− types

Theorem 1 is the soundness of 𝜆-amor−: If 𝑒 is a closed term which has a statically approximated
cost of 𝜅 units (as specified in the monadic typeM𝜅 𝜏) and forcing 𝑒 actually consumes 𝜅 ′ units of
cost, then 𝜅 ′ ≤ 𝜅. We prove this theorem using a logical relation in Section 2.3.

Theorem 1 (Soundness). ∀𝑒, 𝑣, 𝜅, 𝜅 ′, 𝜏 ∈ 𝑇𝑦𝑝𝑒 . ⊢ 𝑒 : M𝜅 𝜏 ∧ 𝑒 ⇓𝜅′ 𝑣 =⇒ 𝜅 ′ ≤ 𝜅

2.3 Model of types and soundness
To prove the soundness of 𝜆-amor−, we develop a logical-relation model of its types. The model is
an extension of Pym’s semantics of BI [Pym et al. 2004] with potentials, the cost monad, and type
refinements. We also step-index the model [Ahmed 2004] to break a circularity in its definition,
arising from impredicative quantification over types, as in the work of Neis et al. [2011]. Because
we use step-indices, we also have augmented operational semantics that count the number of rules
(denoted 𝑇 ) used during evaluation. The revised judgments are written 𝑒 ⇓𝑇 𝑣 (pure) and 𝑒 ⇓𝜅𝑇 𝑣
(forcing). The expected details are in the technical appendix. Note that there is no connection
between 𝑇 and 𝜅 in the forcing judgment – the former is purely an artifact of our metatheoretic
proofs, while the latter is induced by ↑ constructs in the program. Our use of step-indices, also
written 𝑇 , is standard and readers not familiar with them may simply ignore them. The model
(Fig. 5) is defined using four relations: a value relation, an expression relation and substitution
relations for the affine and non-affine contexts. The first two are mutually recursive, well-founded
in the lexicographic order ⟨step index (𝑇 ), type (𝜏), value < expression⟩.
Value relation. The value relation (denoted by J.K) gives an interpretation to 𝜆-amor− types (of

kind 𝑇𝑦𝑝𝑒) as sets of triples of the form (𝑝,𝑇 , 𝑣). Importantly, the potential 𝑝 is an upper-bound on
the ambient potential required to construct the value 𝑣 . It must include potential associated with
the (types of) subexpressions of 𝑣 .
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We describe interesting cases of this relation. The interpretation for the list type is defined by
a further induction on list size. For a list of size 0 the value relation contains a nil value with
any potential (since nil captures no potential). For a list of size 𝑠 + 1, the value relation is defined
inductively on 𝑠 , similar to the tensor pair, which we describe next. For a tensor (⊗) pair, both
components can be used. Therefore, the potential required to construct a tensor pair is at least the
sum of the potentials needed to construct the two components. On the other hand, for a with (&)
pair, either but not both of the components can be used by the context. So the potential needed for
a & pair should be sufficient for each component separately. The type !𝜏 contains !𝑒 when 𝑒 is in 𝜏 .
The important aspect here is that the potential associated with 𝑒 must be 0, otherwise we would
have immediate unsoundness due to replication of potential, as described in Section 1.

Next, we explain the interpretation of the arrow type 𝜏1 ⊸ 𝜏2: 𝜆𝑥.𝑒 is in this type with potential
𝑝 if for any substitution 𝑒 ′ (of type 𝜏1) that comes with potential 𝑝 ′, the total potential 𝑝 + 𝑝 ′ is
sufficient for the body 𝑒 [𝑒 ′/𝑥] (of type 𝜏2).

The step indices𝑇 play an important role only in the interpretation of the polymorphic type ∀𝛼.𝜏 .
Since the type-level parameter 𝛼 may be substituted by any type, potentially one even larger than 𝜏 ,
the relation would not be well-founded by induction on types alone. Here, we rely on step-indices,
noting that substituting 𝛼 with a type consumes at least one step in our operational semantics,
so the relation for 𝜏 (with the substitution) needs to be defined only at a smaller step index. This
follows prior work [Neis et al. 2011].
Next, we come to the new, interesting types for potential and the cost monad. The potential

type [𝑛] 𝜏 contains 𝑣 with required potential 𝑝 if 𝑝 is sufficient to account for 𝑛 and the potential
required for 𝑣 . (Note that the same value 𝑣 is in the interpretation of both 𝜏 and [𝑛] 𝜏 .) The graded
monadic type M𝜅 𝜏 contains the (impure) value 𝑣 with required potential 𝑝 if 𝑝 and 𝜅 together
suffice to cover the cost 𝜅 ′ of actually forcing 𝑣 and the potential 𝑝 ′ required for the resulting value,
i.e., if 𝑝 + 𝜅 ≥ 𝜅 ′ + 𝑝 ′. The ambient potential 𝑝 and the cost 𝜅 on the monad appear together in a
sum, which explains why the typing rule T-release can offset cost on the monad using potential.

The interpretation of a type family 𝜆𝑡 𝑖 .𝜏 is a type-level function, as expected. The interpretation
of type-level application is an application of such a function. The remaining cases of the value
relation of Fig. 5 should be self-explanatory.
Expression relation. The expression relation, denoted J.KE , maps a type to a set of triples of the

form (𝑝,𝑇 , 𝑒). Its definition is fairly simple and standard: we simply check if the value 𝑣 obtained
by pure evaluation of 𝑒 is in the value relation of the same type. The potential does not change
during pure evaluation, but we adjust the step index correctly.

Substitution relations. Finally, we describe the substitution relations for the affine context (Γ) and
the non-affine context (Ω). Each relation maps the context to a set of valid substitutions for the
context, paired with a step index and a potential. The two key points about the interpretation of Γ
are: 1) The substitution 𝛾 should map each variable to a value of the correct type (semantically), and
2) The potential 𝑝 for the context should be more than the sum of the potentials required for the
substitutions of each of the variables. The interpretation of the non-affine context Ω is simpler. It
only demands that the substituted value is in the interpretation of the correct type with 0 potential.
Soundness. As is standard for logical-relations models, the main meta-theoretic property is the

“fundamental theorem” (Theorem 2). The theorem basically says that if 𝑒 is well-typed in some
contexts at type 𝜏 , then the application of any substitutions in the semantic interpretation of the
contexts map 𝑒 into the semantic interpretation of 𝜏 . The important, interesting aspect of the
theorem in 𝜆-amor− is that the potential needed for 𝑒 (after substitution) equals the potential
coming from the context, 𝑝𝑙 . This the crux of the soundness of (amortized) cost analysis in 𝜆-amor−.

Theorem 2 (Fundamental theorem for 𝜆-amor−). ∀Θ,Ω, Γ, 𝑒, 𝜏,𝑇 , 𝑝𝑙 , 𝛾, 𝛿, 𝜎, 𝜄.
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Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏 ∧ (𝑝𝑙 ,𝑇 ,𝛾) ∈ JΓ 𝜎𝜄KE ∧ (0,𝑇 , 𝛿) ∈ JΩ 𝜎𝜄KE ∧ . |= Δ 𝜄 =⇒
(𝑝𝑙 ,𝑇 , 𝑒 𝛾𝛿) ∈ J𝜏 𝜎𝜄KE .

Here, 𝜄, 𝜎 , 𝛿 and 𝛾 denote substitutions for the index context Θ, the type context Ψ, the non-affine
context Ω and the affine context Γ, respectively. This theorem is proved by induction on the given
typing judgment with a subinduction on the step-index for the case of fix. The technical appendix
has the entire proof.
Theorem 1 is a direct corollary of this fundamental theorem. We can derive several additional

corollaries about execution cost directly from this fundamental theorem. For instance, for open
terms which only partially use the input potential and save the rest with the result, we can derive
Corollary 3. Here, 𝑒 is a thunk that expects as input a unit argument, but with some associated
potential 𝑞. When applied, 𝑒 returns a computation (of 0 cost) that forces to a value with a residual
potential 𝑞′. The corollary says that if the context Γ provides a potential 𝑝𝑙 , then forcing 𝑒 (with
the substitution 𝛾 ) incurs a cost 𝐽 and produces a value 𝑣 that requires potential 𝑝𝑣 such that
𝐽 ≤ (𝑞 + 𝑝𝑙 ) − (𝑞′ + 𝑝𝑣). This expression may look complex, but it is simply a difference of the
incoming potentials of 𝑒 (𝑞 and 𝑝𝑙 ) and the outgoing potentials of 𝑒 (𝑞′ and 𝑝𝑣). In Section 4, we
show an interesting use of this corollary for deriving an alternate proof of soundness of univariate
RAML via its embedding in 𝜆-amor−.

Corollary 3. ∀Γ, 𝑒, 𝑞, 𝑞′, 𝜏, 𝑝𝑙 , 𝛾, 𝐽 , 𝑣𝑡 , 𝑣 .
.; .; .; .; Γ ⊢ 𝑒 : [𝑞] 1 ⊸ M 0 ( [𝑞′] 𝜏) ∧ (𝑝𝑙 , _, 𝛾) ∈ JΓKE ∧ 𝑒 () 𝛾 ⇓ 𝑣𝑡 ⇓𝐽 𝑣 =⇒
∃𝑝𝑣 . (𝑝𝑣, _, 𝑣) ∈ J𝜏K ∧ 𝐽 ≤ (𝑞 + 𝑝𝑙 ) − (𝑞′ + 𝑝𝑣).

3 EXAMPLES
Next, we show three nontrivial examples of cost analysis in 𝜆-amor−. Complete type derivations
for the examples can be found in the technical appendix. The technical appendix also has additional
examples that we omit here: Okasaki’s implicit queue in the call-by-name setting, and the standard
list map and append functions.

3.1 Functional queue
Eager functional FIFO queues are often implemented using two LIFO stacks represented as standard
functional lists, say 𝑙1 and 𝑙2. Enqueue is implemented as a push (cons) on 𝑙1. Dequeue is implemented
as a pop (head) from 𝑙2 if it is non-empty. However, if 𝑙2 is empty, then the contents of 𝑙1 are
transferred, one at a time, to 𝑙2 and the new 𝑙2 is popped. The transfer from 𝑙1 to 𝑙2 reverses 𝑙1,
thus changing the stack’s LIFO semantics to a queue’s FIFO semantics. We describe the amortized
analysis of this eager queue in 𝜆-amor−. Our cost model is that every list cons operation incurs a
unit cost and no other operation incurs any cost.

Note that the worst-case cost of dequeue is linear in the size of 𝑙1. However, the amortized cost
of dequeue is actually constant. This is proved by counting the cost of transferring an element
from 𝑙1 to 𝑙2 ahead of time – when that element is enqueued in 𝑙1. This works because an enqueued
element can be transferred from 𝑙1 to 𝑙2 at most once. Concretely, the enqueue operation has a
cost (it requires a potential) of 3 units, of which 1 is used by the enqueue operation itself and the
remaining 2 are stored as potential with the element in the list 𝑙1, to be used later in the dequeue
operation if required. This is reflected in the type of enqueue below. The program code for enqueue
is straightforward, so we skip it here.
𝑒𝑛𝑞 : ∀𝑚,𝑛. [3] 1 ⊸ 𝜏 ⊸ 𝐿𝑛 ( [2] 𝜏) ⊸ 𝐿𝑚𝜏 ⊸ M 0 (𝐿𝑛+1 ( [2] 𝜏) ⊗ 𝐿𝑚𝜏)
Observe how each element of the first list 𝑙1 in both the input and the output has a potential

2 associated with it. The dequeue operation (denoted by 𝑑𝑞 below) is a bit more involved. The
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constraints in the type of dequeue reflect that: a) dequeue can only be performed on a non-empty
queue, i.e., if𝑚 + 𝑛 > 0 and b) the sum of the lengths of the resulting list is only 1 less than the
length of the input lists, i.e., ∃𝑚′, 𝑛′.((𝑚′ + 𝑛′ + 1) = (𝑚 + 𝑛)). The full type and the term for the
dequeue operation are described in Listing 1. Dequeue uses a function𝑚𝑜𝑣𝑒 , which moves elements
from the first list to the second. We skip the description of𝑚𝑜𝑣𝑒 . Type-checked terms for 𝑒𝑛𝑞, 𝑑𝑞
and𝑚𝑜𝑣𝑒 are in the technical appendix.
𝑑𝑞 : ∀𝑚,𝑛.(𝑚 + 𝑛 > 0) ⇒ 𝐿𝑚 ( [2] 𝜏) ⊸ 𝐿𝑛𝜏 ⊸ M 0 (∃𝑚′, 𝑛′.((𝑚′ + 𝑛′ + 1) = (𝑚 + 𝑛))&(𝐿𝑚′ [2] 𝜏 ⊗ 𝐿𝑛

′
𝜏))

𝑑𝑞 ≜ Λ.Λ.Λ.𝜆 𝑙1 𝑙2 . match 𝑙2 with
|nil ↦→ bind 𝑙𝑟 =𝑚𝑜𝑣𝑒 [] [] 𝑙1 nil in

match 𝑙𝑟 with
|nil ↦→ fix𝑥 .𝑥
|ℎ𝑟 :: 𝑙 ′𝑟 ↦→ retΛ.⟨⟨nil, 𝑙 ′𝑟 ⟩⟩

|ℎ2 :: 𝑙 ′2 ↦→ retΛ.⟨⟨𝑙1, 𝑙 ′2⟩⟩
Listing 1. Dequeue operation for eager functional queue in 𝜆-amor−

3.2 Church encoding
Unlike our previous example where we had a fixed cost for both enqueue and dequeue, now we
describe a function whose cost actually varies each time it is applied. To illustrate this point, we
encode Church numerals in 𝜆-amor−. Church numerals are a classic example of higher-order terms
where an argument function is applied multiple times to encode various natural numbers. This
means that if we want to assign a variable cost (say 𝐶 𝑖 for the 𝑖th instance) to the argument
function, we really need to make the type polymorphic in 𝑖 . This gives rise to a type which uses
second-rank index polymorphism.
To recap, Church numerals encode natural numbers as function applications. For example, a

Church zero is defined as 𝜆𝑓 .𝜆𝑥 .𝑥 (with zero applications), a Church one as 𝜆𝑓 .𝜆𝑥 .𝑓 𝑥 (with one
application), a Church two as 𝜆𝑓 .𝜆𝑥 .𝑓 (𝑓 𝑥) (with two applications) and so on. To type a Church
numeral, we must specify a type for 𝑓 . We assume that we have an N-indexed family of types 𝛼 ,
and that 𝑓 maps 𝛼 𝑖 to 𝛼 (𝑖 + 1) for every 𝑖 . Then, the 𝑛th Church numeral, given such a function 𝑓 ,
maps 𝛼 0 to 𝛼 𝑛.

Next, we consider costs. Just for illustration, suppose that we count a unit cost for every function
application. We want to encode the precise costs of operations like addition, multiplication and
exponentiation in types. Classically, these operations are defined compositionally. For example,
addition of𝑚 and 𝑛 is defined by applying𝑚 to the successor function and 𝑛. This iterates the
successor function𝑚 times over 𝑛. To type this, the type of 𝑓 in the Church nats must be general
enough. For this, we use a cost family 𝐶 from N to R+. The cost of applying 𝑓 depends on the
index of the argument. Then, given such a 𝑓 , the 𝑛th Church numeral maps 𝛼 0 to 𝛼 𝑛 with cost
((∑𝑖<𝑛𝐶 𝑖) + 𝑛), where each 𝐶 𝑖 is the cost of using 𝑓 the 𝑖th time, and the last 𝑛 is the cost of the
𝑛 applications in the definition of the 𝑛th Church numeral. Our type for Church numerals, called
Nat below, captures exactly this intuition.

Nat = 𝜆𝑡𝑛.∀𝛼 : N→ 𝑇𝑦𝑝𝑒.∀𝐶 : N→ R+ .
!(∀𝑗 .((𝛼 𝑗 ⊗ [𝐶 𝑗] 1) ⊸ M 0 (𝛼 ( 𝑗 + 1)))) ⊸
M 0 ((𝛼 0 ⊗ [(∑𝑖<𝑛 𝐶 𝑖) + 𝑛] 1) ⊸ M 0 (𝛼 𝑛))

Below, we describe a term for the Church one, denoted 1, that has type Nat 1. For notational
simplification, we define 𝑒1 ↑1 𝑒2 ≜ (bind− = ↑1 in ret(𝑒1 𝑒2)), which applies 𝑒1 to 𝑒2 and
additionally incurs a cost of 1 unit.

1 : Nat 1
1 ≜ Λ.Λ.𝜆𝑓 . ret (𝜆𝑥 . let !𝑓𝑢 = 𝑓 in let ⟨⟨𝑦1, 𝑦2⟩⟩ = 𝑥 in release− = 𝑦2 in bind𝑎 = store() in 𝑓𝑢 [] ↑1⟨⟨𝑦1, 𝑎⟩⟩)
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The term 1 takes the input pair 𝑥 of type 𝛼 0 ⊗ [((𝐶 0) + 1)] 1 and binds its two components to
𝑦1 and 𝑦2. It then releases the potential ((𝐶 0) + 1) in 𝑦2, stores 𝐶 0 of the released potential in 𝑎,
and applies the input function 𝑓𝑢 to ⟨⟨𝑦1, 𝑎⟩⟩, incurring a cost of 1 unit. This incurred cost models
the cost of the application (which we want to count). It is offset by the remaining 1 potential that
was released from 𝑦2.

Next, we show the encoding for Church addition. Church addition is defined using a successor
function (𝑠𝑢𝑐𝑐), which is also defined and type-checked in 𝜆-amor−, but whose details we elide
here. It is just enough to know that the cost of 𝑠𝑢𝑐𝑐 under our cost model is two units.

𝑠𝑢𝑐𝑐 : ∀𝑛. [2] 1 ⊸ M 0 (Nat[𝑛] ⊸ M 0 (Nat[𝑛 + 1]))
An encoding of Church addition (𝑎𝑑𝑑) in 𝜆-amor− is shown below. The type of 𝑎𝑑𝑑 takes the

required potential (4∗𝑛1+2 here) along with two Church naturals (Nat 𝑛1 andNat 𝑛2) as arguments
and computes their sum. The potential of (4 ∗ 𝑛1 + 2) units corresponds to the precise cost of
performing the Church addition in our cost model. The whole type is parameterized on 𝑛1 and 𝑛2.
Ignoring the decorations for monadic operations, 𝑎𝑑𝑑 simply applies 𝑁1 to 𝑠𝑢𝑐𝑐 and 𝑁2, as expected.

𝑎𝑑𝑑 : ∀𝑛1, 𝑛2 . [(4 ∗ 𝑛1 + 2)] 1 ⊸ M 0 (Nat 𝑛1 ⊸ M 0 (Nat 𝑛2 ⊸ M 0 (Nat (𝑛1 + 𝑛2))))
𝑎𝑑𝑑 ≜ Λ.Λ.𝜆𝑝. ret(𝜆𝑁1 . ret(𝜆𝑁2 . release− = 𝑝 in bind𝑎 = 𝐸1 in 𝐸2))
𝐸1 ≜ 𝑁1 [] [] ↑1!(Λ.𝜆𝑡 . let ⟨⟨𝑦1, 𝑦2⟩⟩ = 𝑡 in release− = 𝑦2 in

bind𝑏1 = (bind𝑏2 = store() in (𝑠𝑢𝑐𝑐 [] 𝑏2)) in 𝑏1 ↑1 𝑦1)
𝐸2 ≜ bind𝑏 = store() in 𝑎 ↑1⟨⟨𝑁2, 𝑏⟩⟩

Listing 2. Encoding of the Church addition in 𝜆-amor−

We have similarly encoded Church multiplication and exponentiation in 𝜆-amor−. We are un-
aware of such a general encoding of Church numerals in a monadic cost framework without the
use of potentials.

3.3 List fold
As our final example, we describe the cost analysis of a program that uses higher-order functions
with variable cost and recursion, a combination that prior work like RAML/AARA [Hoffman 2011;
Hoffmann et al. 2017] cannot handle. Our example is a slightly modified right-fold function for lists.

Conceptually, the right fold function aggregates (folds) a list by applying an aggregation function
(given as an argument) to the elements of a list (starting from the rightmost element) along with
a starting value (also given as an argument). We are interested in an encoding where the cost of
applying the aggregation function varies in each recursion step. To model this kind of variable cost
we make use of a cost family 𝐶 : N→ R+. The intent is that every time the aggregation function is
applied, its cost could be different. In particular, the cost of the 𝑖th application is 𝐶 (𝑛 − 𝑖) units,
where 𝑛 is the length of the list.

𝑓 𝑜𝑙𝑑𝑟 : ∀𝛼, 𝛽, 𝑛,𝐶 : N→ R+ .
!(∀𝑖 . [𝐶 𝑖] 1 ⊸ Nat(𝑖) ⊸ 𝛼 ⊸ 𝛽 ⊸ M 0 𝛽) ⊸ !Nat(𝑛) ⊸ 𝛽 ⊸ 𝐿𝑛𝛼 ⊸ [∑𝑖<𝑛 𝐶 𝑖] 1 ⊸ M 0 𝛽

𝑓 𝑜𝑙𝑑𝑟 ≜ fix𝑓 ′.Λ.Λ.Λ.Λ.𝜆𝑓 𝑐 𝑠 𝑙𝑠 𝑝.

let !𝑓𝑢 = 𝑓 in
let !𝑐𝑢 = 𝑐 in
match 𝑙𝑠 with
|nil ↦→ ret 𝑠
|ℎ :: 𝑡 ↦→ release _ = 𝑝 in

bind 𝑝 ′ = store() in
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bind𝑝 ′′ = store() in
bind 𝑡𝑟 = 𝑓 ′ [] [] [] [] !𝑓𝑢 !(𝑐𝑢 − 1) 𝑠 𝑡 𝑝 ′′ in
(𝑓𝑢 [] 𝑝 ′ (𝑐𝑢 − 1) ℎ 𝑡𝑟 )

Listing 3. foldr function
The type and the term for 𝑓 𝑜𝑙𝑑𝑟 are described in Listing 3. The type of 𝑓 𝑜𝑙𝑑𝑟 is parametric in

𝛼, 𝛽, 𝑛 and 𝐶 , where 𝛼 is the type of the elements of the list, 𝛽 is the type of the result, 𝑛 is the
length of the input list and 𝐶 , as mentioned earlier, is the cost family used to model the varying
cost of the aggregation function. To obtain a variable cost for each application of the aggregating
function, we make use of second-rank index polymorphism like we did for Church numerals. This
means that we parameterize the aggregating function with an index which can be instantiated
appropriately to obtain the desired cost. We specify the cost of each application as a potential of
(𝐶 𝑖) units in a negative position of the aggregating function. To obtain a function whose cost truly
depends on 𝑖 , we add a parameter of type Nat(𝑖) (which denotes a singleton type over naturals)
to the aggregating function (the first argument of 𝑓 𝑜𝑙𝑑𝑟 ).5 The overall type of the aggregating
function has an exponential because we use it multiple times, once in every recursive call. Finally,
the total cost (obviously

∑
𝑖<𝑛𝐶 𝑖 units) must be provided as an input potential to 𝑓 𝑜𝑙𝑑𝑟 .

4 EMBEDDING UNIVARIATE RAML
In this section we describe an embedding of Resource Aware ML (RAML) [Hoffman 2011; Hoffmann
and Hofmann 2010] into 𝜆-amor−. RAML is an effect-based type system for amortized analysis
of OCaml programs using the method of potentials [Cormen et al. 2009; Tarjan 1985]. The main
motivation for this embedding is to show that: 1) 𝜆-amor− can also perform effect-based cost analysis
like RAML and thus can be used to analyze all examples that have been tried on RAML, 2) 𝜆-amor−,
despite being call-by-name in the pure part, can embed RAML which is a call-by-value framework.

We describe an embedding of Univariate RAML [Hoffman 2011; Hoffmann and Hofmann 2010]
(which subsumes Linear RAML [Hofmann and Jost 2003]) into 𝜆-amor−. We leave embedding
multivariate RAML [Hoffmann et al. 2011] to future work but anticipate no fundamental difficulties
in doing so.

4.1 A brief primer on Univariate RAML
We give a brief primer on Univariate RAML [Hoffman 2011; Hoffmann and Hofmann 2010] here.
The key feature of Univariate RAML is its ability to encode univariate polynomials in the size of the
input as potential functions. Such functions are expressed as non-negative linear combinations of
binomial coefficients

(
𝑛
𝑘

)
, where𝑛 is the size of the input data structure and 𝑘 is some natural number.

Vector annotations on the list type 𝐿 ®𝑞𝜏 , for instance, are used as a representation of such univariate
polynomials. The underlying potential on a list of size 𝑛 and type 𝐿 ®𝑞𝜏 can then be described as
𝜙 ( ®𝑞, 𝑛) ≜ ∑

1≤𝑖≤𝑘
(
𝑛
𝑖

)
𝑞𝑖 where ®𝑞 = {𝑞1 . . . 𝑞𝑘 }. The authors of RAML show using the properties of

binomial coefficients, that such a representation is amenable to an inductive characterization of
polynomials which plays a crucial role in setting up the typing rules of their system. If ®𝑞 = {𝑞1 . . . 𝑞𝑘 }
is the potential vector associated with a list then ⊳( ®𝑞) = {𝑞1 + 𝑞2, 𝑞2 + 𝑞3, . . . 𝑞𝑘−1 + 𝑞𝑘 , 𝑞𝑘 } is the
potential vector associated with the tail of that list. Trees follow a treatment similar to lists. Base
types (unit, bools, ints) have zero potential and the potential of a pair is just the sum of the potentials
of the components. A snippet of the definition of the potential function Φ(𝑎 : 𝐴) (from Hoffman
[2011]) is described below.
A type system is built around this basic idea with a typing judgment of the form Σ; Γ ⊢𝑞

𝑞′ 𝑒𝑟 : 𝜏
where Γ is a typing context mapping free variables to their types, Σ is a context for function

5One could choose to represent Nat(𝑖) as 𝐿𝑖1 in 𝜆-amor. We use singleton types just for clarity here.
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Φ(𝑎 : 𝐴) = 0 where 𝐴 ∈ {𝑢𝑛𝑖𝑡, 𝑖𝑛𝑡, 𝑏𝑜𝑜𝑙} Φ( [] : 𝐿 ®𝑞𝐴) = 0
Φ((𝑎1, 𝑎2) : (𝐴1, 𝐴2)) = Φ(𝑎1 : 𝐴1) + Φ(𝑎2 : 𝐴2) Φ((𝑎 :: ℓ) : 𝐿 ®𝑞𝐴) = 𝑞1 + Φ(𝑎 : 𝐴) + Φ(ℓ : 𝐿⊳®𝑞𝐴)

where ®𝑞 = {𝑞1 . . . 𝑞𝑘 }

𝜏1
𝑞/𝑞′
→ 𝜏2 ∈ Σ(𝑓 )

Σ;𝑥 : 𝜏1 ⊢
𝑞+𝐾𝑎𝑝𝑝

1
𝑞′−𝐾𝑎𝑝𝑝

2
𝑓 𝑥 : 𝜏2

app
®𝑝 = (𝑝1, . . . , 𝑝𝑘 )

Σ;𝑥ℎ : 𝜏, 𝑥𝑡 : 𝐿 (⊳ ®𝑝)𝜏 ⊢𝑞+𝑝1+𝐾
𝑐𝑜𝑛𝑠

𝑞 𝑐𝑜𝑛𝑠 (𝑥ℎ, 𝑥𝑡 ) : 𝐿 ®𝑝𝜏
cons

Fig. 6. Selected type rules of Univariate RAML from Hoffman [2011]

signatures mapping a function name to a type (this is separate from the typing context because
RAML only has first-order functions that are declared at the top-level), 𝑞 and 𝑞′ denote the statically
approximated available and remaining potential before and after the execution of 𝑒𝑟 , respectively,
and 𝜏 is the zero-order type of 𝑒𝑟 . Vector annotations are specified on list and tree types (as
mentioned above).

Types of first-order functions follow an intuition similar to the typing judgment above. 𝜏1
𝑞/𝑞′
→𝜏2

denotes the type of a first-order RAML function which takes an argument of type 𝜏1 and returns a
value of type 𝜏2. 𝑞 units of potential are needed before this function can be applied and 𝑞′ units
of potential are left after this function has been applied. Intuitively, the cost of the function is
upper-bounded by (𝑞+potential of the input) - (𝑞′+potential of the result). Fig. 6 describe typing
rules for function application and list cons. The app rule type-checks the function application
with an input and remaining potential of (𝑞 + 𝐾𝑎𝑝𝑝1 ) and (𝑞′ − 𝐾𝑎𝑝𝑝2 )6 units, respectively. RAML
divides the cost of application into 𝐾𝑎𝑝𝑝1 and 𝐾𝑎𝑝𝑝2 units. Of the available 𝑞 +𝐾𝑎𝑝𝑝1 units, 𝑞 units are
required by the function itself and 𝐾𝑎𝑝𝑝1 units are consumed before the application is performed.
Likewise, of the remaining 𝑞′ − 𝐾𝑎𝑝𝑝2 units, 𝑞′ units are made available from the function and 𝐾𝑎𝑝𝑝2
units are consumed after the application is performed. The cons rule requires an input potential of
𝑞 + 𝑝1 +𝐾𝑐𝑜𝑛𝑠 units of which 𝑝1 units are added to the potential of the resulting list and 𝐾𝑐𝑜𝑛𝑠 units
are consumed as the cost of performing this operation.

Soundness of the type system is defined by Theorem 4. Soundness is defined for top-level RAML
programs (formalized later in Definition 6), which basically consist of first-order function definitions
(denoted by 𝐹 ) and the "main" expression 𝑒 , where execution starts. Stack (denoted by 𝑉 ) and heap
(denoted by 𝐻 ) are used to provide bindings for free variables and locations in 𝑒 .

Theorem 4 (Univariate RAML’s soundness). ∀𝐻,𝐻 ′,𝑉 , Γ, Σ, 𝑒, 𝜏, 𝑠v, 𝑝, 𝑝 ′, 𝑞, 𝑞′, 𝑡 .
𝑃 = 𝐹, 𝑒 is a RAML top-level program and
𝐻 |= 𝑉 : Γ ∧ Σ, Γ ⊢𝑞

𝑞′ 𝑒 : 𝜏 ∧𝑉 ,𝐻 ⊢𝑝
𝑝′ 𝑒 ⇓𝑡 𝑠v, 𝐻 ′ =⇒ 𝑝 − 𝑝 ′ ≤ (Φ𝐻,𝑉 (Γ) + 𝑞) − (𝑞′ + Φ𝐻 (𝑠v : 𝜏))

4.2 Type-directed translation of Univariate RAML into 𝜆-amor−

As mentioned above, types in Univariate RAML include unit, booleans, integers, lists, trees, pairs
and first-order functions. Without loss of generality we introduce two simplifications: a) we abstract
RAML’s bool and int types into an arbitrary base type denoted by b and b) we just choose to work
with the list type only ignoring trees. These simplifications only make the development more
concise as we do not have to deal with the redundancy of treating similar types again and again.

The translation from Univariate RAML to 𝜆-amor− is type-directed. We describe the type trans-
lation function (denoted by L.M) from RAML types to 𝜆-amor− types in Fig. 7.

Since RAML allows for full replication of unit and base types, we translate RAML’s base type, b,
into !b of 𝜆-amor−. But translation of the unit type does not need a !, as 1 and !1 are isomorphic in
𝜆-amor−. Unlike the unit and base type of RAML, the list type does have some potential associated
with it, represented by ®𝑞. Therefore, we translate RAML’s list type into a pair type composed of
6Every time a subtraction like (𝐼 − 𝐽 ) appears, RAML implicitly assumes that there is a side condition (𝐼 − 𝐽 ) ≥ 0.
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L𝑢𝑛𝑖𝑡M = 1
LbM = !b
L𝐿 ®𝑞 𝜏M = ∃𝑠 .( [𝜙 ( ®𝑞, 𝑠)] 1 ⊗ 𝐿𝑠L𝜏M)

L(𝜏1, 𝜏2)M = (L𝜏1M ⊗ L𝜏2M)

L𝜏1
𝑞/𝑞′
→ 𝜏2M = [𝑞] 1 ⊸ L𝜏1M ⊸ M 0 ( [𝑞′] L𝜏2M)

Fig. 7. Type translation of Univariate RAML

𝜏1
𝑞/𝑞′
→ 𝜏2 ∈ Σ(𝑓 )

Σ;𝑥 : 𝜏1 ⊢
𝑞+𝐾𝑎𝑝𝑝

1
𝑞′−𝐾𝑎𝑝𝑝

2
𝑓 𝑥 : 𝜏2 { 𝜆𝑢.release− = 𝑢 in bind− = ↑𝐾

𝑎𝑝𝑝

1 in bind 𝑃 = store() in 𝐸1
app

𝐸1 = bind 𝑓1 = (𝑓 𝑃 𝑥) in release 𝑓2 = 𝑓1 in bind− = ↑𝐾
𝑎𝑝𝑝

2 in bind 𝑓3 = store 𝑓2 in ret 𝑓3
Fig. 8. Expression translation for the app case: Univariate RAML to 𝜆-amor−

a modal unit type carrying the required potential and a 𝜆-amor− list type. Since the list type in
𝜆-amor− is refined with size, we add an existential on the pair to quantify the size of the list. The
potential captured by the unit type must equal the potential associated with the RAML list (this
is represented by the function 𝜙 ( ®𝑞, 𝑠)). The function 𝜙 ( ®𝑞, 𝑠) corresponds to the one that RAML
uses to compute the total potential associated with a list of 𝑠 elements, which we described above.
Note the difference in how potentials are managed in RAML vs how they are managed in the
translation. In RAML, the potential for an element gets added to the potential of the tail with
every cons operation and, dually only the potential of the head element is consumed in the match
operation. The translation, however, does not assign potential on a per-element basis. Instead, the
total potential of the entire list is captured using the 𝜙 function and the translations of the cons
and the match expressions work by adding or removing potential from this total. We believe a
translation which works with per element potential is also feasible but we would need an additional
index to identify the elements of the list in the list data type.
We translate a RAML pair type into a tensor (⊗) pair. This is in line with how pairs are treated

in RAML (both elements of the pair are available on elimination). Finally, a function type 𝜏1
𝑞/𝑞′
→𝜏2

in RAML is translated into the function type [𝑞] 1 ⊸ L𝜏1M ⊸ M 0 ( [𝑞′] L𝜏2M). As in RAML, the
translated function type also requires a potential of 𝑞 units for application and a potential of 𝑞′
units remains after the application. The monadic type is required because we cannot release/store
potential without going into the monad. The translation of typing contexts is defined pointwise
using the type translation function.

We use this type translation function to produce a translation for Univariate RAML expressions
by induction on RAML’s typing judgment. The translation judgment is Σ; Γ ⊢𝑞

𝑞′ 𝑒𝑟 : 𝜏 { 𝑒𝑎 . It
basicallymeans that awell-typed RAML expression 𝑒𝑟 is translated into a 𝜆-amor− expression 𝑒𝑎 . The
translated expression is of the type [𝑞] 1 ⊸ M 0 ( [𝑞′]L𝜏M). We only describe the app rule here (Fig. 8).
Since we know that the desired term must have the type [𝑞 + 𝐾𝑎𝑝𝑝1 ] 1 ⊸ M 0 ( [𝑞′ − 𝐾𝑎𝑝𝑝2 ]L𝜏M), the
translated term is a function which takes an argument, 𝑢, of the desired modal type and releases
the potential to make it available for consumption. The continuation then consumes 𝐾𝑎𝑝𝑝1 potential
that leaves 𝑞 potential remaining for bind 𝑃 = store() in 𝐸1. We then store 𝑞 units of potential with
the unit and use it to perform a function application. We get a result of typeM 0 ( [𝑞′] L𝜏2M). We
release these 𝑞′ units of potential and consume 𝐾𝑎𝑝𝑝2 units from it. This leaves us with a remaining
potential of 𝑞′ −𝐾𝑎𝑝𝑝2 units. We store this remaining potential with 𝑓2 and wrap it up in a monad to
get the desired type. Translations of other RAML terms (which we do not describe here) follow a
similar approach. The entire translation is intuitive and relies extensively on the ghost operations
store and release at appropriate places.

We show that the translation is type-preserving by proving that the obtained 𝜆-amor− terms are
well-typed (Theorem 5). The proof of this theorem works by induction on RAML’s type derivation.
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Theorem 5 (Type preservation: Univariate RAML to 𝜆-amor−). If Σ; Γ ⊢𝑞
𝑞′ 𝑒 : 𝜏 in Univariate RAML

then there exists 𝑒 ′ such that Σ; Γ ⊢𝑞
𝑞′ 𝑒 : 𝜏 { 𝑒 ′ and there is a derivation of .; .; .; LΣM, LΓM ⊢ 𝑒 ′ :

[𝑞] 1 ⊸ M 0 ( [𝑞′]L𝜏M) in 𝜆-amor−.

As mentioned earlier, RAML only has first-order functions which are defined at the top-level. So,
we need to lift this translation to the top-level. Definition 6 defines the top-level RAML program
along with the translation.

Definition 6 (Top level RAML program translation). Assume a top-level RAML program
𝑃 ≜ 𝐹, 𝑒𝑚𝑎𝑖𝑛 where 𝐹 ≜ 𝑓 1(𝑥) = 𝑒𝑓 1, . . . , 𝑓 𝑛(𝑥) = 𝑒𝑓 𝑛 s.t.
Σ, 𝑥 : 𝜏𝑓 1 ⊢𝑞1𝑞′1 𝑒𝑓 1 : 𝜏

′
𝑓 1 . . . Σ, 𝑥 : 𝜏𝑓 𝑛 ⊢𝑞𝑛

𝑞′𝑛
𝑒𝑓 𝑛 : 𝜏 ′

𝑓 𝑛
and Σ, Γ ⊢𝑞

𝑞′ 𝑒𝑚𝑎𝑖𝑛 : 𝜏

where Σ = 𝑓 1 : 𝜏𝑓 1
𝑞1/𝑞′1→ 𝜏 ′

𝑓 1, . . . , 𝑓 𝑛 : 𝜏𝑓 𝑛
𝑞𝑛/𝑞′𝑛→ 𝜏 ′

𝑓 𝑛
.

Then, the translation of 𝑃 , denoted by 𝑃 , is defined as (𝐹, 𝑒𝑡 ) where
𝐹 = fix𝑓1.𝜆𝑢.𝜆𝑥 .𝑒𝑡1, . . . , fix𝑓𝑛 .𝜆𝑢.𝜆𝑥 .𝑒𝑡𝑛 s.t.
Σ, 𝑥 : 𝜏𝑓 1 ⊢𝑞1𝑞′1 𝑒𝑓 1 : 𝜏

′
𝑓 1 { 𝑒𝑡1 . . . Σ, 𝑥 : 𝜏𝑓 𝑛 ⊢𝑞𝑛

𝑞′𝑛
𝑒𝑓 𝑛 : 𝜏 ′

𝑓 𝑛
{ 𝑒𝑡𝑛 and

Σ, Γ ⊢𝑞
𝑞′ 𝑒𝑚𝑎𝑖𝑛 : 𝜏 { 𝑒𝑡 .

4.3 Semantic properties of the translation
Besides type-preservation, we additionally: 1) prove that our translation preserves semantics
and cost of the source RAML term and 2) re-derive RAML’s soundness result using 𝜆-amor−’s
fundamental theorem (Theorem 2) and properties of the translation. This is a sanity check to ensure
that our type translation preserves cost meaningfully (otherwise, we would not be able to recover
RAML’s soundness theorem in this way).

Semantics and cost preservation is formally stated in Theorem 7, which can be read as follows: if
𝑒𝑠 is a closed source (RAML) term which translates to a target (𝜆-amor−) term 𝑒𝑡 and if the source
expression evaluates to a value (and a heap𝐻 , because RAML uses imperative boxed data structures),
then the target term after applying to a unit (because the translation is always a function) can
be evaluated to a value 𝑡v𝑓 via pure (⇓) and forcing (⇓𝐽 ) relations such that the source and the
target values are the same and the cost of evaluation in the target is at least as much as the cost of
evaluation in the source.

Theorem 7 (Semantics and cost preservation). ∀𝐻, 𝑒, 𝑠v, 𝑝, 𝑝 ′, 𝑞, 𝑞′.
.; . ⊢𝑞

𝑞′ 𝑒𝑠 : b { 𝑒𝑡 ∧ ., . ⊢𝑝𝑝′ 𝑒 ⇓ 𝑠v, 𝐻 =⇒
∃𝑡v𝑓 , 𝐽 .𝑒𝑡 () ⇓ _ ⇓𝐽 𝑡v𝑓 ∧ 𝑠v = 𝑡v𝑓 ∧ 𝑝 − 𝑝 ′ ≤ 𝐽

The proof of Theorem 7 is via a cross-language relation between RAML and 𝜆-amor− terms.
The relation (described in the technical appendix) is complex because it has to relate RAML’s
imperative data structures (like list which is represented as a chain of pointers in the heap) with
𝜆-amor−’s purely functional datastructures. The fundamental theorem of this relation allows us to
establish that the source expression and its translation are related, which implies semantics and
cost preservation as required by Theorem 7.

Finally, we re-derive RAML’s soundness (Theorem 4) in 𝜆-amor− using 𝜆-amor−’s fundamental
theorem and the properties of the translation. To prove this theorem, we obtain a translated term
corresponding to the term 𝑒 (of Theorem 4) via our translation. Then, using Theorem 7, we show
that the cost of forcing the unit application of the translated term is lower-bounded by 𝑝 − 𝑝 ′.
After that, we use Corollary 3 to obtain the upper-bound on 𝑝 − 𝑝 ′ as required in the statement of
Theorem 4.
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Indices 𝐼 , 𝐽 , 𝐾 ::= . . . | ⃝△ 𝐽 ,𝐾
𝑎 𝐼 | . . .

Types 𝜏 ::= . . . | !𝑎<𝐼𝜏 | . . .
Non-affine context Ω ::= . | Ω, 𝑥 :𝑎<𝐼 𝜏
for term variables

Ω1 + Ω2 ≜


Ω2 Ω1 = .
(Ω′

1 + Ω2/𝑥), 𝑥 :𝑐<𝐼+𝐽 𝜏 Ω1 = Ω′
1, 𝑥 :𝑎<𝐼 𝜏 [𝑎/𝑐] ∧ (𝑥 :𝑏<𝐽 𝜏 [𝐼 + 𝑏/𝑐]) ∈ Ω2

(Ω′
1 + Ω2), 𝑥 :𝑎<𝐼 𝜏 Ω1 = Ω′

1, 𝑥 :𝑎<𝐼 𝜏 ∧ (𝑥 :− −) ∉ Ω2∑
𝑎<𝐼 Ω ≜

{
. Ω = .

(∑𝑎<𝐼 Ω), 𝑥 :𝑐<
∑
𝑎<𝐼 𝐽

𝜎 Ω = Ω′, 𝑥 :𝑏<𝐽 𝜎 [(
∑
𝑑<𝑎 𝐽 [𝑑/𝑎] + 𝑏)/𝑐]

Fig. 9. Changes to the type system syntax to obtain 𝜆-amor from 𝜆-amor−

5 𝜆-amor (WITH SUB-EXPONENTIALS)
𝜆-amor− is quite expressive, but it can only represent one or an unbounded number of copies of a
term. This was evident in the encoding of Church numerals (Section 3.2) and 𝑓 𝑜𝑙𝑑𝑟 (Section 3.3). In
the Church numeral 𝑛, the argument function can only be used 𝑛 times, yet the type requires an
unbounded number of copies of the function, since we cannot express “𝑛 copies” using just !. A
similar situation reappeared in 𝑓 𝑜𝑙𝑑𝑟 where the aggregating function can only be used 𝑛 times (once
in every recursion step), but the type requires an unbounded number of copies of this function.
To overcome this limitation and improve expressiveness, we refine the exponential type !𝜏

of 𝜆-amor− to a dependent sub-exponential !𝑖<𝑛𝜏 , which is morally equivalent to the iterated
tensor 𝜏 [0/𝑖] ⊗ 𝜏 [1/𝑖] . . . ⊗ 𝜏 [(𝑛 − 1)/𝑖]. Thus, !𝑖<𝑛𝜏 not only specifies a finite bound 𝑛 on the
number of copies of the underlying term, but also provides the ability to give each of them a
different type (by varying the substitution for 𝑖). To the best of our knowledge, this dependent
sub-exponential was first introduced in Bounded Linear Logic [Girard et al. 1992]. Subsequent work
on 𝑑ℓPCF [Dal Lago and Gaboardi 2011] and its variant [Dal Lago and Petit 2012] showed how the
dependent sub-exponential can be used as part of a coeffect-based cost analysis for PCF programs.
In the rest of this section, we extend 𝜆-amor− with the dependent sub-exponential to obtain

the full system 𝜆-amor. This allows the representation of bounded replication as explained above.
However, unlike the work on 𝑑ℓPCF, we do not adopt the coeffect-style of cost analysis in 𝜆-amor.
Costs are still represented via the cost monad of 𝜆-amor−. We later show in Section 6 how 𝑑ℓPCF’s
coeffect-based cost analysis can be simulated in 𝜆-amor.

5.1 Changes to the types and type system
Syntax. We take the same language that was described in Section 2 but replace the exponential

type with an indexed sub-exponential type. There are no changes to the term syntax or the semantics
of the language. However, we extend the index term language with additional counting constructs
that are described below. The changes to the types and indices are summarized in Fig. 9.

In particular, we include the forest cardinality operator⃝△ 𝐼 ,𝐽
𝑎 𝐾 in the index language. This operator,

inspired from 𝑑ℓPCF, counts the number of nodes in a forest of trees. Specifically, suppose we have
a forest of trees whose nodes are numbered in a pre-order depth-first traversal starting from the
roots of the trees (where the trees have been totally ordered in some way). Assume that the number
of children of node 𝑎 is 𝐾 (𝑎) (𝐾 has 𝑎 free in it). Then, ⃝△ 𝐼 ,𝐽

𝑎 𝐾 is the total number of nodes in the
trees rooted at the node 𝐼 and its next 𝐽 − 1 siblings. The formal definition of the forest cardinality
operator is shown in Fig. 10. The forest cardinality operator is used to represent the cardinality of
arbitrary recursion trees (note that 𝜆-amor inherits the general fixpoint operator from 𝜆-amor−).
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⃝△ 𝐼 ,0𝑎 𝐾 = 0

⃝△ 𝐼 ,𝐽 +1𝑎 𝐾 = ⃝△ 𝐼 ,𝐽𝑎 𝐾 + (⃝△ 𝐼+1+⃝△
𝐼 ,𝐽
𝑎 𝐾,𝐾 [𝐼+⃝△ 𝐼 ,𝐽

𝑎 𝐾/𝑎]
𝑎 𝐾)

Fig. 10. Formal definition of forest cardinality from [Dal Lago and Gaboardi 2011]

Typing judgment. The typing judgment of 𝜆-amor is the same as that of 𝜆-amor−: Ψ;Θ;Δ;Ω; Γ ⊢
𝑒 : 𝜏 . However, the definition of Ω is now different. The non-affine context Ω now carries elements
of the form 𝑥 :𝑎<𝐼 𝜏 (Fig. 9). An element of this form means that 𝐼 copies of 𝑥 are available with
types 𝜏 [0/𝑖] . . . 𝜏 [(𝐼 − 1)/𝑖], mirroring the dependent sub-exponential. The non-affine context also
differs in the definition of the operator +, which was formerly just a disjoint union. Now, the
contexts being added may have common variables and we have to add their multiplicities. The
revised + operation on non-affine contexts is defined in Fig. 9. The figure also defines an iterated
sum operation on contexts,

∑
𝑎<𝐼 Ω.

Typing rules. We only describe the type rules for the sub-exponential, the fixpoint and the use of
non-affine assumptions as these are the only rules of 𝜆-amor− that change. See Fig. 11. T-subExpI
is the rule for the introduction form of the sub-exponential. It says that if an expression 𝑒 has type
𝜏 in the non-affine context Ω and the constraint 𝑎 < 𝐼 for a fresh parameter 𝑎, and 𝑒 does not
use any any affine resources (indicated by an empty Γ) then !𝑒 has type !𝑎<𝐼𝜏 in the non-affine
context

∑
𝑎<𝐼 Ω. Observe how the multiplicity 𝐼 of resources in the introduced type !𝑎<𝐼𝜏 matches

the multiplicity 𝐼 in the concluding context
∑
𝑎<𝐼 Ω. The dual rule T-subExpE is straightforward:

Eliminating !𝑎<𝐼𝜏 yields the assumption 𝑥 :𝑎<𝐼 𝜏 in the non-affine context for the continuation. The
rule T-var2 specifies when such a hypothesis from the non-affine context can be used. The key
requirement is that 𝐼 ≥ 1, i.e., the multiplicity of the hypothesis being used should be at least 1.
The fixpoint expression (fix𝑥 .𝑒) encodes recursion by allowing 𝑒 to refer to fix𝑥 .𝑒 via 𝑥 . T-fix is

the typing rule for this fixpoint construct. It is a refinement of the corresponding rule in Fig. 3. The
refinements serve two purposes: 1) they make the total number of recursive calls of the fixpoint
explicit (this number is denoted 𝐿) and 2) they introduce a parameter 𝑏 that ranges over the different
recursive calls, enumerated in a pre-order traversal of the recursion tree. The root of the tree (the
top-level call) corresponds to 𝑏 = 0. The type 𝜏 is parameterized by 𝑏. The term 𝐼 (𝑏) (the term 𝐼

has 𝑏 free in it) is the number of children of the 𝑏th node in the recursion tree. The rule can be
understood as follows. The first premise of the rule types an arbitrary recursive call corresponding
to the node 𝑏 of the recursion tree. To type the fixpoint body 𝑒 for this call, the first premise allows
𝐼 (𝑏) copies of the parameter 𝑥 with appropriate types. These copies correspond to the results of
the recursive calls below node 𝑏 (note that (𝑏 + 1 + ⃝△𝑏+1,𝑎

𝑏
𝐼 ) is the index of the 𝑎th child of node 𝑏

in the recursion tree). The second premise merely says that 𝐿 must really be an upper bound on
the cardinality of a tree in which the 𝑏th node has 𝐼 (𝑏) children. The conclusion of the rule says
that the entire fixpoint can be typed with 𝐿 copies of Ω, and the final type is 𝜏 [0/𝑏].

Subtyping. We also introduce a new subtyping rule, sub-bSum, which moves potential outside a
sub-exponential to inside. The rule, shown below, is sound because it does not change the total
potential. Potentials are anyway ghost, so moving them from one place to another is allowed in
our semantic model. Formally, the soundness of this as well as other subtyping rules is captured by
Lemma 8. 𝜎 and 𝜄 represent the substitutions for the type and index variables respectively.

Ψ;Θ;Δ ⊢ ([∑𝑎<𝐼 𝐾] !𝑎<𝐼𝜏) <: (!𝑎<𝐼 [𝐾] 𝜏) sub-bSum

Lemma 8 (Value subtyping lemma). ∀Ψ,Θ,Δ, 𝜏 ∈ 𝑇𝑦𝑝𝑒, 𝜏 ′, 𝜎, 𝜄.
Ψ;Θ;Δ ⊢ 𝜏 <: 𝜏 ′ ∧ . |= Δ𝜄 =⇒ J𝜏 𝜎𝜄K ⊆ J𝜏 ′ 𝜎𝜄K
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Ψ;Θ, 𝑎;Δ, 𝑎 < 𝐼 ;Ω; . ⊢ 𝑒 : 𝜏
Ψ;Θ;Δ;

∑
𝑎<𝐼 Ω; . ⊢!𝑒 :!𝑎<𝐼𝜏

T-subExpI

Ψ;Θ;Δ;Ω1; Γ1 ⊢ 𝑒 : (!𝑎<𝐼𝜏) Ψ;Θ;Δ;Ω2, 𝑥 :𝑎<𝐼 𝜏 ; Γ2 ⊢ 𝑒 ′ : 𝜏 ′

Ψ;Θ;Δ;Ω1 + Ω2; Γ1 + Γ2 ⊢ let !𝑥 = 𝑒 in 𝑒 ′ : 𝜏 ′
T-subExpE

Θ,Δ |= 𝐼 ≥ 1
Ψ;Θ;Δ;Ω, 𝑥 :𝑎<𝐼 𝜏 ; Γ ⊢ 𝑥 : 𝜏 [0/𝑎]

T-var2

Ψ;Θ, 𝑏;Δ, 𝑏 < 𝐿;Ω, 𝑥 :𝑎<𝐼 𝜏 [(𝑏 + 1 + ⃝△𝑏+1,𝑎
𝑏

𝐼 )/𝑏]; . ⊢ 𝑒 : 𝜏 𝐿 ≥ ⃝△ 0,1
𝑏
𝐼

Ψ;Θ;Δ;
∑
𝑏<𝐿 Ω; . ⊢ fix 𝑥 .𝑒 : 𝜏 [0/𝑏]

T-fix

Fig. 11. Changes to the type rules

It is noteworthy that sub-bSum is the only subtyping rule in 𝜆-amor that specifies how two
modalities interact. In particular, we do not have a rule to make the sub-exponential and the monad
interact (i.e., we do not have what is often called a “distributive law” [Gaboardi et al. 2016]). We
have not encountered the need for such an interaction. However, studying such an interaction
could be an interesting direction for future work.

5.2 Model of types and soundness
We only describe the value relation for the sub-exponential here as the remaining cases of the
value relation are exactly the same as before. (𝑝,𝑇 , !𝑒) is in the value interpretation at type !𝑎<𝐼𝜏
iff the potential 𝑝 suffices for all 𝐼 copies of 𝑒 at the instantiated types 𝜏 [𝑖/𝑎] for 0 ≤ 𝑖 < 𝐼 . The
other change to the model is in the interpretation of Ω. This time we have (𝑝, 𝛿) instead of (0, 𝛿) in
the interpretation of Ω such that 𝑝 is sufficient for all copies of all variables in the context. Both
changes to the model are described below.

J!𝑎<𝐼𝜏K ≜ {(𝑝, !𝑒) | ∃𝑝0, . . . , 𝑝𝐼−1 .𝑝0 + . . . + 𝑝𝐼−1 ≤ 𝑝 ∧ ∀0 ≤ 𝑖 < 𝐼 .(𝑝𝑖 , 𝑒) ∈ J𝜏 [𝑖/𝑎]KE }
JΩKE = {(𝑝, 𝛿) | ∃𝑓 : V𝑎𝑟𝑠 → I𝑛𝑑𝑖𝑐𝑒𝑠 → P𝑜𝑡𝑠.

(∀(𝑥 :𝑎<𝐼 𝜏) ∈ Ω.∀0 ≤ 𝑖 < 𝐼 . (𝑓 𝑥 𝑖, 𝛿 (𝑥)) ∈ J𝜏 [𝑖/𝑎]KE ) ∧
(∑𝑥 :𝑎<𝐼𝜏 ∈Ω ∑

0≤𝑖<𝐼 𝑓 𝑥 𝑖) ≤ 𝑝}

We formalize the soundness of 𝜆-amor’s type system as the following fundamental theorem.
Compared to the fundamental theorem of 𝜆-amor− (Theorem 2), this fundamental theorem has an
additional potential 𝑝𝑚 that comes from the interpretation of Ω (this potential was 0 in 𝜆-amor−).

Theorem 9 (Fundamental theorem). ∀Ψ,Θ,Δ,Ω, Γ, 𝑒, 𝜏 ∈ 𝑇𝑦𝑝𝑒, 𝑝𝑙 , 𝑝𝑚, 𝛾, 𝛿, 𝜎, 𝜄.
Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏 ∧ (𝑝𝑙 , 𝛾) ∈ JΓ 𝜎𝜄KE ∧ (𝑝𝑚, 𝛿) ∈ JΩ 𝜎𝜄KE ∧ . |= Δ 𝜄 =⇒
(𝑝𝑙 + 𝑝𝑚, 𝑒 𝛾𝛿) ∈ J𝜏 𝜎𝜄KE

The proof of the theorem proceeds in a manner similar to that of Theorem 2, i.e., by induction
on the typing derivation. Now, in the fix case, we additionally induct on the recursion tree. This
also requires generalizing the induction hypothesis to account for the potential of the children of a
node in the recursion tree. The technical appendix has the entire proof.

6 EMBEDDING 𝑑ℓPCF
In this section we describe an embedding of 𝑑ℓPCF [Dal Lago and Gaboardi 2011] into 𝜆-amor.
𝑑ℓPCF is a coeffect-based cost-analysis type system (contrast this with RAMLwhich is an effect-based
type system) which has been shown to be relatively complete for the cost analysis of PCF programs.
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𝑑ℓPCF terms 𝑡 ::= 𝑛 | 𝑠 (𝑡) | 𝑝 (𝑡) | 𝑖 𝑓 𝑧 𝑡 𝑡ℎ𝑒𝑛 𝑢 𝑒𝑙𝑠𝑒 𝑣 | 𝜆𝑥 .𝑡 | 𝑡𝑢 | fix 𝑥 .𝑡
𝑑ℓPCF types 𝜎, 𝜏 ::= 𝑁𝑎𝑡 [𝐼 , 𝐽 ] | 𝐴 ⊸ 𝜎

𝐴 ::= [𝑎 < 𝐼 ]𝜎

Fig. 12. 𝑑ℓPCF’s syntax of terms and types from [Dal Lago and Gaboardi 2011]

Θ;Δ |= 𝐽 ≥ 0 Θ;Δ |= 𝐼 ≥ 1 Θ;Δ ⊢ 𝜎 [0/𝑎] <: 𝜏
Θ;Δ; Γ, 𝑥 : [𝑎 < 𝐼 ]𝜎 ⊢𝐽 𝑥 : 𝜏

var
Θ;Δ; Γ, 𝑥 : [𝑎 < 𝐼 ]𝜏1 ⊢𝐽 𝑒 : 𝜏2

Θ;Δ; Γ ⊢𝐽 𝜆𝑥.𝑒 : ( [𝑎 < 𝐼 ] .𝜏1) ⊸ 𝜏2
lam

Θ;Δ; Γ ⊢𝐽 𝑒1 : ( [𝑎 < 𝐼 ]𝜏1) ⊸ 𝜏2 Θ, 𝑎;Δ, 𝑎 < 𝐼 ;Δ ⊢𝐾 𝑒2 : 𝜏1
Γ′ ⊒ Γ ⊕ ∑

𝑎<𝐼 Δ 𝐻 ≥ 𝐼 + 𝐽 +∑
𝑎<𝐼 𝐾

Θ;Δ; Γ′ ⊢𝐻 𝑒1 𝑒2 : 𝜏2
app

Fig. 13. Selected typing rules of 𝑑ℓPCF from [Dal Lago and Gaboardi 2011]

The objective of this embedding is twofold: It shows that (a) 𝜆-amor can simulate coeffect-based
cost analysis like 𝑑ℓPCF’s and (b) 𝜆-amor is also relatively complete for PCF.

6.1 A brief primer on 𝑑ℓPCF
𝑑ℓPCF [Dal Lago and Gaboardi 2011] is a call-by-name PCF with an affine, refinement type system
for cost analysis.

Syntax. Terms and types of 𝑑ℓPCF are described in Fig. 12. 𝑑ℓPCF uses standard PCF terms but
refines the standard types of PCF for cost analysis. The type of natural numbers is refined with
two indices, yielding 𝑁𝑎𝑡 [𝐼 , 𝐽 ], the type of natural numbers in the range [𝐼 , 𝐽 ] both inclusive. The
function type has the form [𝑎 < 𝐼 ]𝜏1⊸𝜏2 or, more precisely, ( [𝑎 < 𝐼 ]𝜏1)⊸𝜏2. Here, [𝑎 < 𝐼 ]𝜏1 is
just 𝑑ℓPCF’s notation for the dependent sub-exponential !𝑎<𝐼𝜏 that we introduced in Section 5.
Hence, [𝑎 < 𝐼 ]𝜏1 ≈ 𝜏1 [0/𝑎] ⊗ . . . ⊗ 𝜏1 [(𝐼 − 1)/𝑎] and the function type [𝑎 < 𝐼 ]𝜏1⊸𝜏2 is morally
equivalent to (𝜏1 [0/𝑎] ⊗ . . . ⊗ 𝜏1 [(𝐼 − 1)/𝑎])⊸𝜏2. This way, the function type explicitly states the
number of times 𝐼 the argument can be used by the function. This is important for cost analysis in
the type system (explained below). Note that, in 𝑑ℓPCF, the sub-exponential can only appear to the
left of an arrow, and in hypothesis.

Type system. The typing judgment of 𝑑ℓPCF is Θ;Δ; Γ ⊢𝐶 𝑒𝑑 : 𝜏 . Here, Θ is a context of index
variables (as in 𝜆-amor), Δ is a set of assumed constraints on index variables (as in 𝜆-amor), Γ is a
context of term variables, and 𝐶 is an upper bound on the cost of evaluation of 𝑒𝑑 . The important
parts here are Γ and 𝐶 . Γ is actually analogous to the non-affine context Ω of 𝜆-amor: It contains
variables with multiplicities and dependencies. An entry in Ω has the form 𝑥 : [𝑎 < 𝐼 ]𝜏 , which is
exactly the same as an entry 𝑥 :𝑎<𝐼 𝜏 in 𝜆-amor and means that 𝐼 copies of 𝑥 are available with
types 𝜏 [0/𝑎], . . . , 𝜏 [(𝐼 − 1)/𝑎]. The cost 𝐶 comes from the language of index terms. Note that in
𝑑ℓPCF, costs exist only on typing derivations; they are never internalized into types.

We show the important typing rules of 𝑑ℓPCF in Fig. 13. While reading these rules, the reader
should keep 𝑑ℓPCF’s cost model in mind: A unit cost is counted for every use of a variable, which
corresponds to a unit cost for every variable lookup during execution on a Krivine stack machine
for PCF [Krivine 2007]. Rule (var) allows the use of a hypothesis from Γ. The variable’s multiplicity
𝐼 must be at least 1. Perhaps surprisingly, the cost of this rule 𝐽 can be 0, even though this rule
corresponds to the use of a variable. The reason is that the cost for all the uses of a variable is
counted together when the variable is bound (i.e., during function application), as we explain later.
The rule for function abstraction (lam) is perhaps the most interesting and the defining rule of

𝑑ℓPCF’s cost tracking. Here, the cost 𝐽 of 𝜆𝑥 .𝑒 is taken to be the same as the cost of the body 𝑒 .
This may sound overly conservative: 𝜆𝑥 .𝑒 is a value and it evaluates with zero cost, so why count
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the cost of the body 𝑒 in its cost? The reason is that there is no other place to put the cost of the
body. If this were an effect system (which it is not), the body’s cost would be internalized into
the function’s type, and be counted when the function is applied. However, since this is a coeffect
system, we don’t have this luxury, so the cost of the body is pre-counted when the abstraction is
created. This is sound because the type system is affine: We cannot apply the abstraction more
than once, so the amount we pre-count here is certainly an upper-bound on the cost that could
arise from this function’s use in the future. It is this unusual way of counting costs that makes
𝑑ℓPCF substantially different from effect-based systems, and also why potentials are needed for
embedding into 𝜆-amor (this is explained in Section 6.2).
The (app) rule for function application is also interesting. Here, 𝑒1 is a term of type ( [𝑎 <

𝐼 ]𝜏1) ⊸ 𝜏2, so the argument 𝑒2 must be typed parametrically in 𝑎 for all 𝑎 < 𝐼 . The total cost 𝐻
includes the cost 𝐽 of evaluating 𝑒1, the cost evaluating 𝑒2 𝐼 -times (written

∑
𝑎<𝐼 𝐾 ), and, importantly,

an additional cost 𝐼 for the up-to 𝐼 uses of the bound variable in the body of the function after
application. This is where the cost for variable use is actually counted. Note how information about
the multiplicity 𝐼 of a variable – the coeffect – contributes directly to the cost analysis. This justifies
why 𝑑ℓPCF can be classified as a coeffect-based cost tracking system.

Operational semantics. 𝑑ℓPCF uses a Krivine machine for PCF, called 𝐾𝑃𝐶𝐹 [Krivine 2007]. States
of 𝐾𝑃𝐶𝐹 are triples of the form (𝑡, 𝜌, 𝜃 ) where 𝑡 is a 𝑑ℓPCF term, 𝜌 is an environment with variable
bindings (it maps variables to terms) and 𝜃 is stack of closures. A closure (denoted by C) is simply a
pair consisting of a term and an environment. The left side of Fig. 14 lists some evaluation rules of
𝐾𝑃𝐶𝐹 from [Dal Lago and Gaboardi 2011]. For instance, the application triple (𝑒1 𝑒2, 𝜌, 𝜃 ) reduces
in one step to 𝑒1; the argument 𝑒2, along with the current environment, is pushed to the top of
the stack for later evaluation. This is exactly how one would expect an evaluation to happen in a
call-by-name scheme.

(𝑒1 𝑒2, 𝜌, 𝜃 ) → (𝑒1, 𝜌, (𝑒2, 𝜌) .𝜃 )
(𝜆𝑥 .𝑒, 𝜌, C.𝜃 ) → (𝑒1, C.𝜌, 𝜃 )
(𝑥, (𝑡0, 𝜌0) . . . (𝑡𝑛, 𝜌𝑛), 𝜃 ) → (𝑡𝑥 , 𝜌𝑥 , 𝜃 )
(fix𝑥 .𝑒, 𝜌, 𝜃 ) → (𝑒, (𝑥, (fix𝑥 .𝑒, C).𝜌, 𝜃 )

|𝑥 | = 1
|𝑐 | = 1
|𝜆𝑥.𝑒 | = |𝑒 | + 1
|𝑒1 𝑒2 | = |𝑒1 | + |𝑒2 | + 1
|fix𝑥 .𝑒 | = |𝑒 | + 1

Fig. 14. 𝐾𝑃𝐶𝐹 reduction rules (left) and size function (right) from [Dal Lago and Gaboardi 2011]

Soundness. 𝑑ℓPCF’s cost analysis is sound for reductions on the Krivine machine, up to constant
factors. This is formalized in Theorem 10, which says that if the 𝑑ℓPCF type system provides
a cost bound 𝐼 on term 𝑡 (of type 𝑁𝑎𝑡 ) and 𝑡 reduces for 𝑛 steps on the Krivine machine, then
𝑛 ≤ |𝑡 | ∗ (𝐼 + 1), where |𝑡 | is the size of the term 𝑡 , defined on the right side of Fig. 14. The factor |𝑡 |
arises because 𝑑ℓPCF counts only variable uses, while the Krivine machine has other reductions as
well. However, one variable lookup is forced every |𝑡 | reductions. (In the statement of the theorem,
⇓𝑛 is just shorthand for 𝑛-step Krivine reduction starting from the initial state (𝑡, 𝜖, 𝜖).)
Theorem 10 (𝑑ℓPCF’s soundness from [Dal Lago and Gaboardi 2011]). ∀𝑡, 𝐼 , 𝐽 , 𝐾 .

⊢𝐼 𝑡 : 𝑁𝑎𝑡 [𝐽 , 𝐾] ∧ 𝑡 ⇓𝑛 𝑚 =⇒ 𝑛 ≤ |𝑡 | ∗ (𝐼 + 1)

6.2 Type-directed translation of 𝑑ℓPCF into 𝜆-amor
We now describe our embedding of 𝑑ℓPCF in 𝜆-amor. The translation of types, denoted L•M, is
shown in the left side of Fig. 15. We abstract the type of naturals and treat them as a general
abstract base type b. In the translation, the annotation [𝑎 < 𝐼 ] simply changes to !𝑎<𝐼 as the two
have the same meaning. Further, following Moggi’s embedding of call-by-name in the computa-
tional 𝜆-calculus [Moggi 1991], the basic skeleton of the translation of a function type 𝐴⊸𝐵 is
(M 0 L𝐴M)⊸(M 0 L𝐵M). The actual translation of the function type, shown in Fig. 15, additionally
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requires as argument a potential of 𝐼 units (type [𝐼 ] 1), where 𝐼 is the multiplicity of the argu-
ment. This pays for the cost of using the argument up to 𝐼 times in the body of the function
and corresponds to the additional 𝐼 cost added to the total in the application rule (app) of 𝑑ℓPCF
(Section 6.1).

L𝑏M = 𝑏

L[𝑎 < 𝐼 ]𝜏1⊸𝜏2M = !𝑎<𝐼 M 0L𝜏1M ⊸ [𝐼 ] 1 ⊸ M 0 L𝜏2M
L.M = .

LΓ, 𝑥 : [𝑎 < 𝐼 ]𝜏M = LΓM, 𝑥 :𝑎<𝐼 M 0 L𝜏M
Fig. 15. Type and context translation for 𝑑ℓPCF

The translation of 𝑑ℓPCF contexts, shown on the right side of Fig. 15, maps a 𝑑ℓPCF context to a
non-affine context (Ω) in 𝜆-amor. Again, a variable of type 𝜏 is mapped to variable of typeM 0L𝜏M
with the same multiplicity.

Term translation. To explain the translation of terms, we need an auxiliary function on 𝑑ℓPCF
contexts, which we write count (Γ). This function simply adds the multiplicities of all variables in Γ.

count (.) = 0 count (Γ, 𝑥 : [𝑎 < 𝐼 ]𝜏) = count (Γ) + 𝐼
The translation of 𝑑ℓPCF terms is type-derivation directed. The translation judgment is of the
form Θ;Δ; Γ ⊢𝐼 𝑒𝑑 : 𝜏 { 𝑒𝑎 where Θ;Δ; Γ ⊢𝐼 𝑒𝑑 : 𝜏 is a valid 𝑑ℓPCF typing judgment and 𝑒𝑎
denotes the 𝜆-amor translation of the 𝑑ℓPCF expression 𝑒𝑑 . Importantly, the expected type of 𝑒𝑎 is
[𝐼 + count (Γ)] 1 ⊸ M 0 L𝜏M. This type means that 𝑒𝑎 yields something of typeM 0 L𝜏M (the expected
type) after it has been provided (applied to) enough potential. Here, “enough” is 𝐼 + count (Γ) –
𝐼 pays for the cost of evaluation of 𝑒𝑎 , as manifest in the given 𝑑ℓPCF typing judgment, while
count (Γ) pays for the cost of using each variable from the context its multiplicity number of times.
With this basic structure of the translation in mind, we present the important term trans-

lation rules in Fig. 16. The translation of a variable 𝑥 of type 𝜏 , rule (var), is a term of type
[𝐽 + count (Γ) + 𝐼 ] 1 ⊸ M 0 L𝜏M. This term releases the potential 𝐽 + count (Γ) + 𝐼 it receives as
argument, then incurs a unit cost (↑1), and then returns the variable 𝑥 . The unit cost is needed
to faithfully represent 𝑑ℓPCF’s cost model, which counts a unit cost for every use of a variable.
Note that the net remaining cost is 0 because 𝐼 ≥ 1 (premise of the rule), so the released potential
𝐽 + count (Γ) + 𝐼 is at least as much as the incurred unit cost.
The rule for translating functions, rule (lam), handles 𝑑ℓPCF’s unusual way of counting costs

of functions. Here, the 𝑑ℓPCF context in the premise is Γ, 𝑥 : [𝑎 < 𝐼 ]𝜏1, so the type of 𝑒𝑡 is
[𝐽 + count (Γ) + 𝐼 ] 1 ⊸ M 0 L𝜏2M in a context that includes 𝑥 : !𝑎<𝐼 M 0L𝜏1M. We wish to construct a
term of type [𝐽 + count (Γ)] 1 ⊸ M 0

(
!𝑎<𝐼 M 0L𝜏1M ⊸ [𝐼 ] 1 ⊸ M 0 L𝜏2M

)
. Observe how the types of

𝑒𝑡 and the term we want are very similar: They both have the same total potential 𝐽 + count (Γ) + 𝐼
in negative positions. As a result, the required term can be constructed quite easily. The exact
term is shown in the conclusion of rule (lam). The rule for function application, rule (app), can be
understood similarly.

Theorem 11 (Type preservation: 𝑑ℓPCF to 𝜆-amor). If Θ;Δ; Γ ⊢𝐼 𝑒 : 𝜏 in 𝑑ℓPCF then there exists 𝑒 ′

such that Θ;Δ; Γ ⊢𝐼 𝑒 : 𝜏 { 𝑒 ′ and there is a derivation of •;Θ;Δ; LΓM; • ⊢ 𝑒 ′ : [𝐼 + count (Γ)] 1 ⊸
M 0 L𝜏M in 𝜆-amor.

Remark about the importance of potentials. The astute reader has probably noticed that, in this
translation, we represent costs using potentials in negative positions, not monad indices (the monad
index is 0 everywhere in the translation!). Could we have used the monad index instead, and not
needed potentials at all? The answer is no: Trying to embed 𝑑ℓPCF using the monad alone breaks
the well-typedness of the translation of functions in the (lam) rule of Fig. 16. In the following, we
explain this further.

Suppose we were to do away with potentials. Then, in the term translation, a𝑑ℓPCF term 𝑒𝑑 typed
as Θ;Δ; Γ ⊢𝐼 𝑒𝑑 : 𝜏 would no longer translate to a term of type [𝐼 + count (Γ)] 1 ⊸ M 0 L𝜏M, but

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 27. Publication date: January 2021.



27:24 Vineet Rajani, Marco Gaboardi, Deepak Garg, and Jan Hoffmann

Θ;Δ |= 𝐽 ≥ 0 Θ;Δ |= 𝐼 ≥ 1 Θ;Δ ⊢ 𝜎 [0/𝑎] <: 𝜏
Θ;Δ; Γ, 𝑥 : [𝑎 < 𝐼 ]𝜎 ⊢𝐽 𝑥 : 𝜏 { 𝜆𝑝.release− = 𝑝 in bind− = ↑1 in 𝑥

var

Θ;Δ; Γ, 𝑥 : [𝑎 < 𝐼 ]𝜏1 ⊢𝐽 𝑒 : 𝜏2 { 𝑒𝑡

Θ;Δ; Γ ⊢𝐽 𝜆𝑥 .𝑒 : ( [𝑎 < 𝐼 ] .𝜏1) ⊸ 𝜏2 {
𝜆𝑝1 . ret 𝜆𝑦.𝜆𝑝2 . let !𝑥 = 𝑦 in release− = 𝑝1 in release− = 𝑝2 in bind𝑎 = store() in 𝑒𝑡 𝑎

lam

Θ;Δ; Γ ⊢𝐽 𝑒1 : ( [𝑎 < 𝐼 ]𝜏1) ⊸ 𝜏2 { 𝑒𝑡1 Θ, 𝑎;Δ, 𝑎 < 𝐼 ;Δ ⊢𝐾 𝑒2 : 𝜏1 { 𝑒𝑡2
Γ′ ⊒ Γ ⊕ ∑

𝑎<𝐼 Δ 𝐻 ≥ 𝐽 + 𝐼 +∑
𝑎<𝐼 𝐾

Θ;Δ; Γ′ ⊢𝐻 𝑒1 𝑒2 : 𝜏2 { 𝜆𝑝.𝐸0
app

𝐸0 ≜ release− = 𝑝 in 𝐸1, 𝐸1 ≜ bind𝑎 = store() in 𝐸2
𝐸2 ≜ bind𝑏 = 𝑒𝑡1 𝑎 in 𝐸3, 𝐸3 ≜ bind 𝑐 = store!() in 𝐸4
𝐸4 ≜ bind𝑑 = store() in 𝐸5, 𝐸5 ≜ 𝑏 (𝑐𝑜𝑒𝑟𝑐𝑒 !𝑒𝑡2 𝑐) 𝑑

𝑐𝑜𝑒𝑟𝑐𝑒 : !𝑎<𝐼 (𝜏1 ⊸ 𝜏2) ⊸ !𝑎<𝐼𝜏1 ⊸ !𝑎<𝐼𝜏2
𝑐𝑜𝑒𝑟𝑐𝑒 𝐹 𝑋 ≜ let ! 𝑓 = 𝐹 in let !𝑥 = 𝑋 in !(𝑓 𝑥)

Fig. 16. Expression translation: 𝑑ℓPCF to 𝜆-amor

would instead translate to a term of the “equivalent” monadic typeM(𝐼 + count (Γ)) L𝜏M. Further, the
𝑑ℓPCF function type [𝑎 < 𝐼 ]𝜏1⊸𝜏2 would no longer translate to !𝑎<𝐼 M 0L𝜏1M ⊸ [𝐼 ] 1 ⊸ M 0 L𝜏2M,
but would instead translate to !𝑎<𝐼 M 0L𝜏1M ⊸ M 𝐼 L𝜏2M. Further, in the (lam) case, from the premise
we would have a term 𝑒𝑡 of typeM(𝐽 + count (Γ) + 𝐼 ) L𝜏2M in a context that includes 𝑥 : !𝑎<𝐼 M 0L𝜏1M.
We would want to construct a term of typeM(𝐽 + count (Γ))

(
!𝑎<𝐼 M 0L𝜏1M ⊸ M 𝐼 L𝜏2M

)
. However,

such a term does not exist in 𝜆-amor or any calculus with indexed/graded monads that we know of.
To understand this, let’s abstract 𝐽 + count (Γ) to 𝐾 , !𝑎<𝐼 M 0L𝜏1M to 𝜎 , and L𝜏2M to 𝜏 . Then, we are
asking that the type (𝜎 ⊸ M(𝐾 + 𝐼 ) 𝜏) ⊸ M𝐾 (𝜎 ⊸ M 𝐼 𝜏) be inhabited. It should be easy to see
that this goes well beyond standard properties of graded monads. Adding a primitive term of this
type would be sound but dissatisfying.

To summarize, it seems that potentials are somewhat fundamental to embedding a coeffect-based
cost analysis (as in 𝑑ℓPCF) in a monadic or effect-based system like 𝜆-amor. Whether and how this
generalizes to quantitative properties beyond cost remains an open question.

Semantic properties. We proved above that our translation is type preserving. In addition, we
prove that it preserves reduction costs up to constant factors. This requires us to relate reduction
of a 𝑑ℓPCF term 𝑒 in the Krivine machine to the reduction of its translation in 𝜆-amor. This is
technically tedious and, due to lack of space here, we cover it in full detail only in our technical
appendix. Briefly, we define a type-preserving “decompilation” of Krivine states to 𝑑ℓPCF terms. By
composing this with the translation of 𝑑ℓPCF terms to 𝜆-amor, we get a translation from Krivine
states to 𝜆-amor. We then show the following result about this translation (formalized as Lemma
52 in the appendix): A Krivine reduction of 𝑘 steps can be simulated by its 𝜆-amor translation in
𝑖 steps where 𝑘 ≤ (𝑖 + 1) |𝑡 | and |𝑡 | is the size of the initial Krivine state. This result immediately
allows us to re-derive 𝑑ℓPCF’s soundness theorem from that of 𝜆-amor.

Completeness. Finally, we note that Dal Lago and Gaboardi [2011] proved that 𝑑ℓPCF is relatively
complete for PCF programs: Every simply typed, closed PCF program of type 𝑁𝑎𝑡 that reduces in 𝑘
steps to a value can be typed with cost 𝑘 in 𝑑ℓPCF. Since our translation from 𝑑ℓPCF to 𝜆-amor
trivially preserves cost annotations for closed terms, this means that 𝜆-amor can also type (the
translation of) a PCF term that reduces in 𝑘 steps with cost 𝑘 . Hence, 𝜆-amor is also relatively
complete for PCF.
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7 RELATEDWORK
The literature on cost analysis is very vast; we summarize and compare to only a representative
subset of the literature, covering several prominent styles of cost analysis.

Type and effect systems. Several type and effect system have been proposed for amortized analysis
using the method of potentials. Early approaches [Hofmann and Jost 2003; Jost et al. 2009] allow
the potential associated with a value to only be a linear function of the value’s size. Univariate
RAML [Hoffmann and Hofmann 2010] generalizes this to polynomial potentials. Multivariate
RAML [Hoffmann et al. 2011] is a further generalizationwhere a single potential, that is a polynomial
of the sizes of several input variables, can be associated to all of them together. These approaches
work with an assumption that functions are freely duplicable and not under the purview of
affineness. As a result, potential captured in partially applied functions renders these approaches
unsound. This is prevented by simply disallowing closures with captured potential in the type
system. In contrast, 𝜆-amor can effortlessly handle closures that capture potential since the type
system is fully affine. We already showed how to embed Univariate RAML in 𝜆-amor in Section 4.
We believe that the embedding can be extended to Multivariate RAML with some effort.

Later work tries to address some of the limitations of RAML. For instance, [Jost et al. 2010]
extends RAML with limited support for closures and higher-order functions. In particular, [Jost et al.
2010] can handle curried functions only when the potential is associated with the last argument.
More recently, the type system of Knoth et al. [2019] works by capturing the number of times a
partially applied function can be used, thereby supporting closures which have enough potential
for the allowed number of copies. All of these approaches are somewhat ad hoc in nature and do
not fix the root cause in the type theory, which is the lack of affineness. In contrast, 𝜆-amor, being
fully affine, does not have such limitations.

Some prior work such as the unary fragment of Çiçek et al. [2017] uses effect-based type systems
for non-amortized cost analysis. Handley et al. [2020] show how to perform (non-amortized) cost
analysis using refinement types of Liquid Haskell. A significant line of work tracing lineage back to
at least Crary and Weirich [2000] uses sized types and cost represented in a writer monad for cost
analysis. More recently, Danner et al. [2015] show how to extend this idea to extract sound cost
recurrences from programs. These recurrences can be solved to establish cost bounds. However,
none of this work supports potentials or amortized analysis. Conceptually, it is simpler than the
previously-mentioned work on amortized cost analysis (it corresponds to RAML functions where
the input and output potentials are both 0). We believe that all systems mentioned in this paragraph
so far can be embedded in 𝜆-amor. Kavvos et al. [2020] extend the work of Danner et al. [2015] to
the call-by-push-value (CBPV) setting. While we have not considered CBPV here, we believe that
changing 𝜆-amor’s semantics from monadic to CBPV is feasible and not particularly difficult.
Cost analysis using program logics. As an alternative to type systems, a growing line of work

uses variants of Hoare logic for amortized cost analysis [Carbonneaux et al. 2015; Charguéraud
and Pottier 2019; Mével et al. 2019]. The common idea is to represent the potential before and
after the execution of a code segment as ghost state in the pre- and post-condition of the segment,
respectively. Conceptually, this idea is not very different from how we encode potentials using
our [𝑝] 𝜏 construct in the inputs and outputs of functions (e.g., in embedding RAML in Section 4).
However, unlike 𝜆-amor, prior work on program logics for cost analysis shows neither embeddings
of existing frameworks, nor any (relative) completeness result. Haslbeck and Nipkow [2018] present
completeness results for some Hoare logics but only in the context of a simple imperative language.
The real challenge for completeness is handling of higher-order functions with arbitrary recursion,
which 𝜆-amor covers. [Mével et al. 2019] introduce a new concept called time receipts, which are
useful for lower-bound analysis, something that we are extending 𝜆-amor to.
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Cost analysis of lazy programs. Some prior work [Danielsson 2008; Jost et al. 2017; Madhavan et al.
2017] develops methods for cost analysis of lazy programs (call-by-need evaluation). It turns out that
affineness is not required for amortized cost analysis of lazy programs, as an expression is evaluated
only once due to memoization even if it is used several times. As mentioned in Section 1, the
semantics of call-by-need is fundamentally incompatible with the semantics of 𝜆-amor, so we did
not consider call-by-need in this paper. However, at the level of types, there is considerable similarity
between Danielsson [2008] and our work. For example, Danielsson [2008] uses an indexed monad to
track costs as we do. Interestingly, he does not have a separate type-theoretic construct to associate
potential. Instead, he introduces a primitive coercion “pay” of typeM(𝜅1 + 𝜅2) 𝜏 ⊸ M𝜅1 (M𝜅2 𝜏),
which, in a way, represents paying 𝜅1 part of the cost 𝜅1 + 𝜅2 using potential from the outside.
An interesting question is whether, assuming a coercion of this type, we could do away with
potentials altogether and still embed 𝑑ℓPCF. It seems that the answer is no. As we noted at the end
of Section 6.2, the axiom about indexed monads we really need in order to embed 𝑑ℓPCF without
potentials is (𝜎 ⊸ M(𝜅1 + 𝜅2) 𝜏) ⊸ M𝜅1 (𝜎 ⊸ M𝜅2 𝜏), and this is stronger than “pay”.
Coeffect-based cost analysis. 𝑑ℓPCF [Dal Lago and Gaboardi 2011] and 𝑑ℓPCFv [Dal Lago and

Petit 2012] are coeffect-based type systems for non-amortized cost analysis of PCF programs in the
call-by-name and call-by-value settings, respectively. Both systems count the number of variable
lookups during execution on an abstract machine (the Krivine machine for call-by-name and the
CEK machine for call-by-value [Felleisen and Friedman 1987; Krivine 2007]). This is easily done
by tracking (as a coeffect) the number of uses of each variable in an affine type system with a
dependent sub-exponential borrowed from Bounded Linear Logic (BLL) [Girard et al. 1992] (𝜆-amor
also borrows the same dependent sub-exponential, but does not use coeffects for tracking cost). A
common limitation of 𝑑ℓPCF and 𝑑ℓPCFv is that they cannot internalize the cost of a program into
its type; instead the cost is a function of the typing derivation. We showed in Section 6 that 𝜆-amor
can embed 𝑑ℓPCF and internalize its costs into types. Hence, 𝜆-amor advances beyond 𝑑ℓPCF. We
expect that 𝜆-amor can also embed 𝑑ℓPCFv, but have not tried this embedding yet.

Atkey [2018] presents QTT, a quantitative dependent type theory with coeffects. QTT and 𝜆-amor
are very different in their goals. QTT focuses on the interaction between dependent types and
coeffects whereas 𝜆-amor is based on effects (but we show how to simulate coeffects in 𝜆-amor).
Technically, QTT only considers non-dependent coeffects, as in 𝑥 :𝑛 𝜏 (𝑛 copies of the same
𝜏) while 𝜆-amor includes coeffects with parameterized linear dependencies from the dependent
sub-exponential, as in 𝑥 :𝑎<𝑛 𝜏 (𝑛 different instances of 𝜏).

8 CONCLUSION
We developed 𝜆-amor with the broader goal of unifying existing type systems for cost analysis.
𝜆-amor introduces a new modal type constructor to represent potential at the level of types and
uses affine types with a dependent sub-exponential. Through two embeddings, we have shown
that 𝜆-amor can simulate cost analysis for different evaluation strategies (call-by-name and call-by-
value), in different styles (effect-based and coeffect-based), and with or without amortization.
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