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A B S T R A C T

Verification of worst-case bounds (on the resource usage of programs) is an important
problem in computer science. The usefulness of such verification depends on the
precision of the underlying analysis. For precision, sometimes it is useful to consider
the average cost over a sequence of operations, instead of separately considering the cost
of each individual operation. This kind of an analysis is often referred to as amortized
resource analysis. Typically, programs that optimize their internal state to reduce the
cost of future executions benefit from such approaches. Analyzing resource usage of
a standard functional (FIFO) queue implemented using two functional (LIFO) lists is
a classic example of amortized analysis.

In this thesis we present λamor, a type-theory for amortized resource analysis of
higher-order functional programs. A typical amortized analysis works by storing a
ghost state called the potential with data structures. The key idea underlying amortized
analysis is to show that, the available potential with the program is sufficient to
account for the resource usage of that program. Verification in λamor is based on
internalizing this idea into a type theory. We achieve this by providing a general
type-theoretic construct to represent potential at the level of types and then building
an affine type-theory around it. With λamor we show that, type-theoretic amortized
analysis can be performed using well understood concepts from sub-structural and
modal type theories. Yet, it yields an extremely expressive framework which can be
used for resource analysis of higher-order programs, both in a strict and lazy setting.
We show embeddings of two very different styles (one based on effects and the other
on coeffects) of type-theoretic resource analysis frameworks into λamor. We show that
λamor is sound (using a logical relations model) and complete for cost analysis of
PCF programs (using one of the embeddings).

Next, we apply ideas from λamor to develop another type theory (called λcg) for
a very different domain – Information Flow Control (IFC). λcg uses a similar type-
theoretic construct (which λamor uses for the potential) to represent confidentiality
label (the ghost state for IFC).

Finally, we abstract away from the specific ghost states (potential and confidentiality
label) and describe how to develop a type-theory for a general ghost state with a
monoidal structure.
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Z U S A M M E N FA S S U N G

Die Verifikation von"Worst-Case" Schranken für Ressourcennutzung ist ein wichtiges
Problem in der Informatik. Der Nutzen einer solchen Verifikation hängt von der
Präzision der Analyse ab. Aus Gründen der Präzision ist es manchmal nützlich, die
durchschnittlichen Kosten einer Folge von Operationen zu berücksichtigen, statt die
Kosten jeder einzelnen Operation getrennt zu betrachten. Diese Art von Analyse
wird oft als amortisierte Ressourcenanalyse bezeichnet. Typischerweise profitieren
Programme, die ihren Zustand optimieren, um die Kosten zukünftiger Ausführungen
zu reduzieren, von solchen Ansätzen. Die Analyse der Ressourcennutzung einer mit
zwei (LIFO) Listen implementierten funktionalen (FIFO) Schlange ist ein klassisches
Beispiel für eine amortisierte Analyse.

In dieser Arbeit präsentieren wir λamor, eine Typentheorie für die amortisierte
Analyse der Ressourcennutzung höherstufiger Programme. Eine typische amortisierte
Analyse speichert einen "ghost state", der als Potenzial bezeichnet wird, zusam-
men mit den Datenstrukturen. Die Kernidee der amortisierten Analyse ist es, zu
zeigen, dass das dem Programm zur Verfügung stehende Potenzial ausreicht, um die
Ressourcennutzung des Programms zu erfassen. Die Verifikation in λamor basiert
auf der Realisierung dieser Idee in einer Typentheorie. Wir erreichen dies indem wir
ein allgemeines typentheoretisches Konstrukt zur Darstellung des Potenzials auf der
Ebene von Typen definieren und anschließend eine affine Typentheorie aufbauen.
Mit λamor zeigen wir, dass eine typentheoretische amortisierte Analyse mit gut
verstandenen Konzepten aus substrukturellen und modalen Typentheorien durchge-
führt werden kann. Trotzdem ergibt sich ein äußerst aussagekräftiges Framework,
das für die Ressourcenanalyse von höherstufigen Programmen, sowohl ein einem
"strikten", als auch in einem "lazy" Setting, verwendet werden kann. Wir präsentieren
Einbettungen zweier stark verschiedener Arten von typentheoretischen Ressource-
nanalyseframeworks (eines basiert auf Effekten, das andere auf Koeffekten) in λamor.
Wir zeigen, dass λamor korrekt (sound) ist (mithilfe eines "Logical relations" Mod-
ells) und, dass es vollständig für PCF-Programme ist (unter Verwendung einer der
Einbettungen).

Als nächstes verwenden wir Ideen von λamor, um eine andere Typentheorie
(genannt λcg) für einen ganz anderen Anwendungsfall - Informationsflusskontrolle
(IFC) - zu entwickeln. λcg verwendet ähnliche typentheoretische Konstrukte wie
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λamor für das Potenzial verwendet, um die Vertraulichkeitsmarkierungen (den "ghost
state" für IFC) darzustellen.

Schließlich abstrahieren wir von den spezifischen "ghost states" (Potenzial und Ver-
traulichkeitsmarkierungen) und entwickeln eine Typentheorie für einen allgemeinen
"ghost state" mit einer monoidalen Struktur.
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1
I N T R O D U C T I O N

1.1 background and motivation

Verification of worst-case resource bounds is an important problem in computer
science. However, for many data structures (both imperative and functional), the cost
of an operation depends on the internal state at the time of the operation. In these
cases, it is often more useful to establish an upper bound on a sequence of n operations,
and then take the average cost over the n operations. This kind of an analysis is often
called an amortized resource analysis [55]. The analysis can be understood from the
classic example of eager functional queues. Eager functional queues are implemented
using two stacks, say S1 and S2. Enqueue is implemented as a push on S1 (which
takes constant time). Dequeue is implemented as a pop from S2 if it is non-empty but
if S2 is empty then it involves transferring contents from S1 to S2, thereby reversing
the contents of S1, and then popping S2. Such a reversal changes the LIFO semantics
of a stack into the FIFO semantics of a queue. Consequently, the final pop returns the
very first element of the queue, thereby simulating a dequeue operation.

Such an eager functional queue can be easily implemented in a standard functional
language with lists and pairs. Enqueue is encoded as a function which adds the new
element to the front of the first list, l1 (via a cons operation). This is shown in the
Listing 1.1.

enq : τ→ (Lτ ⊗ Lτ)→ (Lτ ⊗ Lτ)
enq , λ a q.

let〈〈l1, l2〉〉 = q in 〈〈a :: l1, l2〉〉
Listing 1.1: Encoding of enqueue

Dequeue on the other hand is a bit involved, it works by case analyzing the second
list (denoted by l2). If l2 is nil then we transfer the contents of l1 into l2. This is
represented by an abstract function move, whose trivial details we elide here, and

1



2 introduction

then popping the resulting second list. Dequeue cannot be performed if both the lists
are empty, represented by ⊥. In the other case, when l2 is non-empty, we just pop the
top element from it. This encoding of dequeue is shown in Listing 1.2.

dq : (Lτ ⊗ Lτ)→ (Lτ ⊗ Lτ)
dq , λ q.
let〈〈l1, l2〉〉 = q in
match l2 with
|nil 7→ let lr = move l1 l2 in
match lr with

|nil 7→ ⊥
|hr :: l

′
r 7→ 〈〈nil, l ′r〉〉

|h2 :: l
′
2 7→ 〈〈l1, l ′2〉〉

Listing 1.2: Encoding of dequeue

Let us now consider a cost model where we only count a unit cost for every push
and pop on the list. Under such a cost model, we can see that enqueue is a constant
time operation as it involves just a single push on the first list. Dequeue, on the other
hand, is a linear time operation with a precise cost of 2 ∗n+ 1 units where n is the
length of the first list. The cost of 2 ∗n units come from a pop and push involved in
the reversal of the stack (as part of the move function), and the cost of 1 unit comes
from the final pop from the second stack.

The problem that we want to analyze is the following: starting from an empty
queue what is the worst case bound for a sequence of m enqueues/dequeues? This
does not sound too hard, as we just saw that dequeue’s worst-case bound is linear.
Therefore a worst-case bound for this problem is O(mn) which is O(m2) (assuming
m is greater than n). This quadratic bound is correct but extremely imprecise as using
amortized analysis we can obtain a much tighter bound for this problem. The key idea
is to make use of the fact that we can never perform more dequeues than enqueues
as we are starting from an empty queue. As a result, we can try to account for the
cost of dequeue at the time of enqueue itself. It does not matter whether the actual
dequeue happens or not. This is sound because we are only interested in the worst
case bounds. In particular, by adding the cost of the move function (two units per
element) we increase the cost of enqueue to three units (which is still a constant) and
reduce the cost of dequeue to one unit (which is also a constant now). This makes the
total cost of this problem linear in the number of operations (m) which is way precise
than the quadratic bound that we came up with earlier.
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This is the general intuition of how amortized analysis works. This intuition with
slight variations has been used by approaches like the method of potential [18, 55], the
method of credits [18, 55] and the method of debits [49]. Common to these approaches
is the notion of a ghost state (which we refer to as potential in this thesis) attached
to data structures. The basic idea underlying these approaches is to show that the
available potential is sufficient to account for the cost of the involved operations.

Let us go back to our example of the eager functional queue to see this in action.
Enqueue and dequeue now require a potential of (at least) three units and one unit,
respectively, to account for their respective amortized costs. Enqueue uses one of the
three units to account for the cost of the push and stores the remaining two with the
newly pushed element on the stack (to be used later for dequeue). Dequeue, which
involves moving elements from one stack to the other, uses the potential (of two units
per element) to cover the cost of the move. The cost of doing an actual pop is covered
by the potential of one unit required by dequeue.

Our goal in this thesis is to internalize these reasoning principles into a type theory
and to build a general framework for static verification of amortized bounds using
such potentials.

1.2 limitations of prior work

Developing a type theory for verification of amortized bounds is not a new research
problem. It has been studied in prior work [20, 27–30, 32] but prior approaches suffer
from two significant technical limitations. The first limitation pertains to the lack of
a general type-theoretic construct for associating potentials to arbitrary types. In prior
work, this association is limited to specific types (e.g. integers, and lists and trees over
first-order data) only. This is not only dissatisfactory from a foundational perspective,
but it also limits expressivity.

The second limitation is the improper or complete lack of linearity in the type
system, which limits expressiveness. One fundamental requirement (for soundness)
is that stored potential must not be duplicated. A natural way of doing this is to
make the type system linear or, more precisely, affine. Some existing type systems
for amortized resource analysis use affineness, but only in very limited contexts. For
example, AARA [28] treats first-order arguments (with potentials) as affine, but not
returned functions. As a result, it forces that all arguments of a Curried function be
applied atomically to prevent duplication of potential captured in a partially applied
function. In other cases, prior work targets call-by-need semantics where affineness
is not needed since a closure is never evaluated twice, even if it is duplicated and
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forced twice. For example, a formalization of Okasaki’s method of debits [49], [20]
uses this approach. However, such an approach does not work in a call-by-name or
call-by-value setting where non-affine potentials are unsound.

Both these limitations highlight a significant gap in the space of type-theoretic
development for amortized analysis. It is unclear at this moment if linearity/affineness
is the right tool for this job, let alone provide a fully general way of type-theoretic
amortized analysis.

1.3 thesis statement

To overcome these limitations in Part I this thesis we present λamor, the first fully
general affine type theory for verification of amortized bounds. Verification in λamor

is based on four key technical pillars: a new modal type for representing potential, use
of affine types for preventing duplication of potential, light-weight type refinements
for expressivity and use of monads to localize cost. All of these except the new modal
type are well-understood concepts from modal and sub-structural type systems. The
key statement/hypothesis on which this thesis is built is the sufficiency of these four
constructs for a very general type theory to verify amortized bounds.

1.4 overview

Cost in λamor is tracked as an effect captured in monads, something which is well
understood from prior work like [20]. Cost bearing computations are described using
monads, where the cost of the computation is specified as a grade on the monadic
type. M κ τ, for instance, is the type of a computation which when forced produces a
value of type τ and incurs a cost κ in doing so (κ is a refinement of type real).

In addition to cost, λamor also captures potential, which is used to pay for the cost
of computations. This is captured using a novel modal type constructor, [p] τ. The p in
the [p] τ describes the potential associated with an inhabitant of type τ. The potential
p is actually a ghost resource. It has no term-level manifestation and is merely a proof
artifact required for the meta-theory. This means an inhabitant of type [p] τ is just an
inhabitant of the underlying type τ. However, this ability to capture potential with an
individual type is extremely advantageous, and is really at the core of making this
framework compositional and scalable to the higher-order setting. For instance, these
potential-carrying modal types make it possible to capture the remaining potential
from a partial function application on the type itself which can be passed around to
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other program parts, an ability that no prior work possesses (we explain this with an
example of list append in Chapter 4).

Potential is a limited resource and, hence, must be tracked correctly. For instance,
an unrestricted use of a value of type [p] τ would give us an unbounded amount of
potential which can be used to type check any program in the system irrespective of
the actual cost. This is prevented using affine types. However, affine types without
exponentials (!) are too restrictive, but if added their use must only be limited to
types that do not capture potentials (otherwise we would end up with the same
problem of getting duplicate potential). To handle this, in λamor we make use
of the dependent sub-exponential (!a<Iτ) from Bounded Linear Logic [24] and its
generalization in d`PCF [39]. !a<Iτ represents I copies of a term of type τ with a free
in it, and the free a inside τ can range from 0 to I− 1. Morally !a<Iτ is equivalent to
τ[0/a] ⊗ . . . ⊗ τ[(n− 1)/a].

Finally, we use light-weight refinements to capture dependencies between input
sizes and costs.

The four pillars described above makes λamor quite expressive. We can give precise
types to fairly intricate encodings like Church numerals. We also embed a core
of Univariate RAML [29] (an effect-based cost analysis framework which is also
based on the method of potentials) and d`PCF [39] (a very different style of cost
analysis which is based on coeffects) in a way that internalizes the cost into the
types. The embedding of RAML and d`PCF shows that two very different styles
of cost tracking can both be described in λamor. But, additionally, we also use the
embedding of d`PCF to get a very strong relative completeness1 result which d`PCF
could achieve (non-compositionally) for whole programs only. So, λamor can be seen
as a compositional extension of d`PCF too. The compositionality works because λamor

can record costs in the types while in d`PCF cost is recorded only in the typing
derivation. For both the embeddings, we show that they preserve types, cost and
semantics of the source programs. This is done by developing cross-language models
for each of the embeddings.

We show that this type theory can be interpreted in Kripke logical-relations where
the Kripke worlds represent resources (à la semantics of BI [51]). The key new insight
is how we treat the type construct for the potentials ([p] τ type that we mentioned
above). The model makes the ghost nature of the potentials explicit by showing
that they only affect the worlds and not the values. We use the model to prove the
soundness of the type system and also to derive additional properties for the RAML
and d`PCF’s embeddings.

1 Completeness is relative to an oracle which can determine the truth of simple index inequalities defined
over finite sums.
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Next, generalizing beyond amortized cost analysis, we show how the potential
construct ([p] τ) and the monad of λamor can be adapted for a completely different
analysis, namely, Information Flow Control (IFC). The idea is to replace potentials
with confidentiality labels (confidentiality annotations) that now act as the ghost state.
Confidentiality labels (unlike potentials) are relational ghost resources i.e. they rep-
resent ghost information across two different executions of a program. Additionally,
affineness has no use in information flow control. Despite such glaring differences
in the nature of the ghost state, we could use familiar ideas from λamor to develop
the type system for information flow control. In particular, the rules for manipulating
ghost resources are quite similar. We call this type system λcg. Besides demonstrating
the generality of our type theory’s constructs, we make additional contributions with
λcg: 1) To prove λcg sound, we develop the first semantic model for IFC type systems
with full-higher order state, something which had not been done prior to our work,
and 2) We show that λcg is very expressive by embedding a standard IFC type system
(an idealization of FlowCaml [50]) into it. We also develop an embedding in the other
direction, thus establishing equi-expressiveness. We prove that these translations are
type- and semantics-preserving. We develop cross-language models to prove some of
these results.

Finally, we tie the two type theories (λamor and λcg) together by showing that the
two ghost states (potential and confidentiality label) are instances of a more general
ghost state with a monoidal structure. We describe how to obtain a type theory for
such a monoidal ghost state.

1.5 contributions

We summarize the key technical contributions of the thesis:

1. We present λamor, a compositional type theory for amortized cost analysis
of higher-order functional programs. λamor is built from well understood
concepts from sub-structural and modal type theories. Yet, λamor is sufficient
to perform both effect- and coeffect-based cost analysis. We give a set-theoretic
interpretation to the types of λamor using Kripke logical-relations and use the
interpretation to prove the type-theory sound.

2. We give an embedding of Univariate RAML [29] and d`PCF [39] in λamor. We
prove that these embeddings are not only type preserving but also semantics
and cost preserving. We show this by deriving alternate proofs of RAML’s and
d`PCF’s soundness in λamor. Both these proofs are based on cross-language
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logical relations, while the original proofs (for both RAML and d`PCF) are
syntactic.

3. Our embedding of d`PCF shows that λamor is relative-complete for cost analysis
of PCF programs. Moreover, our analysis is compositional, unlike d`PCF’s.

4. We show how the basic design principles of λamor can be adapted for a com-
pletely different purpose, namely, information flow analysis. We develop a type
theory for this (λcg), which makes additional contributions.

5. Finally, we abstract away the structural differences between the two type theories
by showing that both λamor and λcg are instances of a more general type theory
for an abstract ghost state with a monoidal structure.

1.6 scope and limitations

The focus of this thesis is to develop the theoretical foundations for type-based
analysis of amortized costs and information flow control. Implementation of these
type theories, while an interesting goal, is out of the scope of this thesis. Nonetheless,
we expect that in a restricted setting like polynomial cost, one could use ideas from
prior work, like AARA [28] and RAML [27, 29], to implement λamor efficiently.
Similarly implementation of the type theory for IFC can be done following ideas from
an existing IFC type system like SLIO [13].

1.7 outline

We organize the rest of this thesis into four parts.
In Part I we describe the type theory for amortized analysis. We begin with a subset

of λamor without the sub-exponential (called λamor−) in Chapter 2. We describe
the meta-theory of λamor− in Chapter 3. Even without the sub-exponential, λamor−

turns out to be quite expressive. We demonstrate this via encodings of a variety of
examples from different domains in Chapter 4. λamor− can also encode the whole
of Univariate RAML [29, 32]. We describe this encoding in Chapter 5. Then we add
the dependent sub-exponential to λamor− and describe the development of λamor

(full) in Chapter 6. λamor is extremely expressive; we obtain a very strong relative
completeness result by embedding d`PCF in Chapter 7. We conclude the amortized
analysis part with a description of related work in Chapter 8.

In Part II we develop a similar type theory for the domain of Information Flow
Control (IFC). We begin with a high level description of the generality of the type-
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theoretic constructs of λamor and how we apply them to the domain of IFC in
Chapter 9. We describe λcg, a type theory for coarse-grained IFC in Chapter 10.
The obtained type theory, λcg, is very expressive, which we show by translating an
existing fine-grained IFC type system into λcg. To do this, we first describe the λfg

type system, a variant of an existing fine-grained IFC type system, in Chapter 11.
Then we show that λfg can be embedded in λcg in Chapter 12. After this, we show
that even the reverse encoding of λcg into λfg is also possible, thereby establishing
equi-expressiveness of the two IFC type systems. The reverse translation from λcg to
λfg is described in Chapter 13. Finally, we describe related work for the IFC part in
Chapter 14.

In part III we describe an abstract monoidal structure that is common to the ghost
states of λamor and λcg in Chapter 15. We describe the differences in the treatment
of the ghost states in λamor and λcg and explain how to reconcile them. We conclude
the thesis in Chapter 16 with some directions for future work.

Additional details of everything presented in this thesis is available in the technical
report [52].



Part I

Type theory for amortized analysis
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2
λa m o r

−

In this chapter we describe the λamor− system (a version of λamor without the
sub-exponential). We begin by describing the syntax of λamor− . Then we look at the
evaluation and typing rules.

2.1 syntax

Types τ ::= 1 | b | τ1( τ2 | τ1 ⊗ τ2 | τ1 & τ2 | τ1 ⊕ τ2 | !τ | [p] τ | M κ τ | Ln τ

α | ∀α : K.τ | ∀i : S.τ | λti : S.τ | τ I | ∃i : S.τ | C⇒ τ | C&τ

Expressions e ::= v | x | e1 e2 | 〈〈e1, e2〉〉 | let〈〈x,y〉〉 = e1 in e2 | fix x.e |

〈e, e〉 | fst(e) | snd(e) | inl(e) | inr(e) | case e, x.e,y.e |

let ! x = e1 in e2 | e :: e | match e with |nil 7→ e1 |h :: t 7→ e2 | e [] |

xlet x = e1 in e2 | clet x = e1 in e2

Values v ::= () | c | λx.e | 〈〈v1, v2〉〉 | 〈v, v〉 | inl(e) | inr(e) | ! e | nil |

Λ.e | ret e | bind x = e1 in e2 | ↑κ | release x = e1 in e2 | store e

Index I, κ,p,n ::= i | N | R+ | I+ I | I− I | λsi : S.I | I I

Constraints C ::= I = I | I < I | C ∧ C

Sort S ::= N | R+ | S→ S

Kind K ::= Type | S→ K

Figure 2.1: λamor− ’s syntax

λamor− treats resource consumption as an an effect. As a result, all operations that
consume resources (i.e. potential) in some form are classified as impure and the rest as
pure. The syntax of the language is shown in Fig. 2.1. We describe the various syntactic
categories of the calculus below.

11
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Indices, sorts, kinds and constraints. λamor− is a refinement type system. (Static)
indices, à la DML [57], are used to track information like the length of a list and
the cost of a computation. The length of list comes from the sort N of natural
numbers. The potential and the cost both come from the sort R+ of non-negative real
numbers. Besides this, the grammar for indices also consists of index variables, index-
level functions and their applications (index level functions and their application is
required for our Church encoding, described in Section 4.3). λamor− also features
kinds, denoted by K. Type represents the kind of the standard affine types of λamor−

and S → K represents the kind of sort-indexed type families. Finally, constraints
(denoted by C) are predicates (=,<,∧) over indices.

Types. λamor− uses an affine type system. In the pure fragment, the most important
type is the modal type denoted by [p] τ. [p] τ can be thought of as the type of a value
with potential p and type τ. We have the unit type (denoted by 1) and an abstract base
type (denoted by b) to represent types like integers or booleans. We have the standard
types from affine λ-calculus, which include types for functions ((), sums (⊕), pairs
(both ⊗ and &) and the exponential (!), which can be assigned to expressions that
can be duplicated. We also have the size-refined list type (Lnτ), where the size n of
the list is drawn from the language of indices (described earlier). We have universal
quantification over types and indices denoted by ∀α : K.τ and ∀i : S.τ respectively,
and similarly we also have existential quantification over indices denoted by ∃i : S.τ.
The constraint type (denoted by C⇒ τ) specifies that if constraint C holds then the
underlying term has the type τ. The other constraint type, denoted by C&τ, specifies
that the constraint C holds and the type of the underlying term is τ. For instance, it
can be used to specify the type of the non-empty list as (n > 0)&(Lnτ). Lastly, we
have sort-indexed type families, which are type-level functions from sorts to kinds. In
the impure fragment, the only type we have is the type of a graded monad, denoted
by M κ τ. Intuitively, M κ τ is the type of a computation that has a cost of κ units (or
needs a potential of κ units) and produces a value of type τ. Technically, M κ τ is a
graded monad [23].

Expressions and values. There are term-level constructors for all types (in the universe
Type) except for the modal type ([p] τ). The inhabitants of type [p] τ are exactly
those of type τ. The potential is really a ghost at the level of terms. We describe the
expression and value forms for some of the types here. The term-level constructors
for the constraint type (C⇒ τ), type and index level quantification (∀α : K.τ, ∀i : S.τ)
are all denoted by Λ.e. The constraints, type and index variables show up only
at the level of types. There is also a fixed point operator (fix ) which is used to
encode recursion. The impure fragment has several terms, including a return (ret e)
and bind (bind x = e1 in e2) for the graded monad. There is a construct for storing
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potential with a term, namely, store e. Dually, we have a construct which can be
used to release the stored potential from a term, release x = e1 in e2. Note that,
store e and release x = e1 in e2 are meaningful only for the type system: they indicate
when potentials need to be stored and released, respectively. Operationally, they are
uninteresting: store e evaluates exactly like ret e, while release x = e1 in e2 evaluates
exactly like bind x = e1 in e2. This is completely consistent with the ghost nature of the
potential. Finally, we have a construct for consuming resources: The tick denoted by
↑κ, it indicates the consumption of κ resources. Programmers place it model different
kind of costs as in prior work [20].

2.2 semantics

Forcing reduction relation: e ⇓κt v

e ⇓t v

ret e ⇓0t+1 v
E-return

e1 ⇓t1 v1 v1 ⇓κ1t2 v
′
1 e2[v

′
1/x] ⇓t3 v2 v2 ⇓κ2t4 v

′
2

bind x = e1 in e2 ⇓κ1+κ2t1+t2+t3+t4+1
v ′2

E-bind

↑κ ⇓κ1 ()
E-tick

e1 ⇓t1 v1 e2[v1/x] ⇓t2 v2 v2 ⇓κt3 v
′
2

release x = e1 in e2 ⇓κt1+t2+t3+1 v
′
2

E-release

e ⇓t v

store e ⇓0t+1 v
E-store

Figure 2.2: Evalaution rules for impure fragment

λamor− is a call-by-name calculus with eager1 evaluation. The pure evaluation
judgment (e ⇓ v) relates a λamor− expression to the value the expression evaluates
to. All monadic forms are treated as values in the pure evaluation. The rules for the
pure fragment are standard and hence omitted here but we describe them in the
technical report [52]. The forcing evaluation judgment (e ⇓κ v, where κ indicates the
amount of resources consumed) is a relation between terms of type M κ τ and values
of type τ. Big-step evaluation rules for the impure fragment of λamor− are given
in Fig. 2.2. The E-return rule states that if e reduces with the pure reduction to v
then so does ret e with 0 cost. At the level of evaluation rules, E-store behaves exactly
like E-return emphasizing the ghost nature of the potential. E-bind is the standard

1 & pairs are evaluated eagerly but since all cost effects are performed in a monad so it does not matter.
! is lazy as in a standard affine λ-calculus.
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monadic composition of e1 with e2, except for the cost annotations – the cost of the
bind is the sum of the costs of forcing e1 and e2. E-release works in a similar way. ↑κ

is the only cost-consuming construct in the language. The E-tick rule states that ↑κ

reduces to () and it consumes κ resources.

2.3 type system

The typing judgment of λamor− is written Ψ;Θ;∆;Ω; Γ ` e : τ. Here, Ψ is a context
mapping type-level variables to their kinds, Θ is a context mapping index-level
variables to their sorts, ∆ is a context of constraints on the index variables, Ω and Γ
are the non-linear and linear typing contexts respectively, both mapping term-level
variables to their types. We use the notation Γ1 + Γ2 to describe disjoint union of the
linear contexts Γ1 and Γ2. Selected typing rules are described in Fig. 2.3, and the full
set of rules can be found in the technical report [52].

T-tensorI describes the type rule for the introduction form for the tensor pair
〈〈e1, e2〉〉 - if e1 and e2 are typed τ1 and τ2 under linear contexts Γ1 and Γ2, respectively,
then 〈〈e1, e2〉〉 is typed (τ1 ⊗ τ2) under the context (Γ1+ Γ2). Dually, T-tensorE describes
the typing for the elimination form of the tensor pair – if expression e is of type
(τ1 ⊗ τ2) in the context Γ1 and a continuation e ′ is of type τ ′ in the context Γ2
along with both elements of tensor pair available via variables x and y, then the
expression let〈〈x,y〉〉 = e in e ′ is of type τ ′ under the context (Γ1 + Γ2). T-expI type
checks !e with type !τ if e can be type-checked with type τ, under an empty linear
context (unbounded terms can not depend on finite resources). We can of course use
weakening (T-weaken) to type the exponential under a non-empty linear context if
required. The subtyping relation (<:) is described below, but we skip describing the
standard details of the v relation which can be found in the technical report [52].
T-expE is the rule for the elimination form of !τ – the important thing to note here is
that the continuation e ′ has unbounded access to e via the non-linear variable x.

T-ret is the type rule for the return of the monad – ret e basically takes a well-typed
expression and returns it unmodified, and hence has a cost of 0 units, represented by
the type M 0 τ. Dually, T-bind describes the typing rule for the monadic bind, which
is basically a sequencing construct. Hence, the cost in the conclusion is the sum of the
costs in the premises. T-tick type checks ↑κ at a monad of unit type that has a cost of
κ units. T-store is the typing rule for the store construct, which is used to associate
potential with a type. If p units of potential are attached to a type τ then the cost of
doing so is p units. Finally, we have T-release as the dual rule for T-store. It takes the
stored potential p1 on the first expression and makes it available to the continuation
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(notice that the conclusion is typed with p2 only while the continuation is typed with
p1 + p2).

Subtyping. Selected subtyping rules are described in Fig. 2.4. As mentioned earlier
λamor− also has type-level functions and applications. We have added subtyping
rules to convert from the application form ((λti : S.τ) I) to the substitution form
(τ[I/i]) and vice versa. Rule sub-potArrow helps in distributing the potential on the
function to the potential over the argument and the return value. sub-potZero helps
cast a value of type τ to a value of type [0] τ. This reinforces the ghost nature of the
potential at the level of terms. The subtyping of the modal type [p] τ is covariant in the
types but contra-variant in the potential because it is sound to throw away potential
(if a term has p units of potential then it also has less than p units of potential). The
subtyping for the monadic type is covariant in both the type and the cost (because it
is always safe to over-estimate the cost of a term). There are additional typing rules
for sorts and kinds which are fairly standard so we omit them here, but describe them
in the technical report [52].

Theorem 1 formulates the soundness criteria for λamor− . Intuitively, it says that, if
e is a closed term which has a statically approximated cost of κ units (as specified in
the monadic type M κ τ) and forcing it actually consumes κ ′ units of resources, then
κ ′ 6 κ. We prove this theorem using a semantic argument described in Chapter 3.

Theorem 1 (Soundness). ∀e, κ, κ ′, τ ∈ Type.
` e : M κ τ ∧ e ⇓κ ′− − =⇒ κ ′ 6 κ

Theorem 1 is the typical way of stating soundness of a type-based cost analysis
without potentials. λamor− also has potentials, so we can state the soundness in an
alternate way as described in Theorem 2. Here, instead of representing the requirement
as a cost on the monad, we represent it as a potential in the negative position. The
Theorem 2 shows that the runtime cost of forcing the term after a unit application is
upper-bounded by the input potential.

Theorem 2 (Soundness). ∀e, κ, κ ′, τ ∈ Type.
` e : [κ] 1(M 0 τ ∧ e() ⇓ _ ⇓κ ′ _ =⇒ κ ′ 6 κ

We give a semantic proof of both these theorems using a technique of step-indexed
Kripke logical relation, which we describe in the next chapter.
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Typing judgment: Ψ;Θ;∆;Ω; Γ ` e : τ

Ψ;Θ;∆;Ω; Γ1 ` e1 : τ1 Ψ;Θ;∆;Ω; Γ2 ` e2 : τ1
Ψ;Θ;∆;Ω; Γ1 + Γ2 ` 〈〈e1, e2〉〉 : (τ1 ⊗ τ2)

T-tensorI

Ψ;Θ;∆;Ω; Γ1 ` e : (τ1 ⊗ τ2) Ψ;Θ;∆;Ω; Γ2, x : τ1,y : τ2 ` e ′ : τ

Ψ;Θ;∆;Ω; Γ1 + Γ2 ` let〈〈x,y〉〉 = e in e ′ : τ
T-tensorE

Ψ;Θ;∆;Ω; . ` e : τ

Ψ;Θ;∆;Ω; . ` !e : !τ
T-ExpI

Ψ;Θ;∆;Ω; Γ1 ` e : !τ Ψ;Θ;∆;Ω, x : τ; Γ2 ` e ′ : τ ′

Ψ;Θ;∆;Ω; Γ1 + Γ2 ` let ! x = e in e ′ : τ ′
T-ExpE

Ψ;Θ;∆;Ω, x : τ; . ` e : τ

Ψ;Θ;∆;Ω; . ` fix x.e : τ
T-fix

Ψ;Θ;∆;Ω; Γ ` e : τ Ψ;Θ;∆ ` Γ ′ v Γ Ψ;Θ;∆ ` Ω ′ v Ω Ψ;Θ;∆ ` τ <: τ ′

Ψ;Θ;∆;Ω ′; Γ ′ ` e : τ ′
T-weaken

Ψ;Θ;∆;Ω; Γ ` e : τ

Ψ;Θ;∆;Ω; Γ ` ret e : M 0 τ
T-ret

Ψ;Θ;∆;Ω; Γ1 ` e1 : M κ1 τ1

Ψ;Θ;∆;Ω; Γ2, x : τ1 ` e2 : M κ2 τ2 Θ;∆ ` κ1 : R+ Θ;∆ ` κ2 : R+

Ψ;Θ;∆;Ω; Γ1 + Γ2 ` bind x = e1 in e2 : M(κ1 + κ2) τ2
T-bind

Θ;∆ ` κ : R+

Ψ;Θ;∆;Ω; Γ ` ↑κ : M κ 1
T-tick

Ψ;Θ;∆;Ω; Γ ` e : τ Θ;∆ ` p : R+

Ψ;Θ;∆;Ω; Γ ` store e : Mp ([p] τ)
T-store

Ψ;Θ;∆;Ω; Γ1 ` e1 : [p1] τ1
Ψ;Θ;∆;Ω; Γ2, x : τ1 ` e2 : M(p1 + p2) τ2 Θ;∆ ` p1 : R+ Θ;∆ ` p2 : R+

Ψ;Θ;∆;Ω; Γ1 + Γ2 ` release x = e1 in e2 : Mp2 τ2
T-release

Figure 2.3: Selected typing rules for λamor−
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Ψ;Θ;∆ ` τ <: τ ′ Θ;∆ |= p ′ 6 p

Ψ;Θ;∆ ` [p] τ <: [p ′] τ ′
sub-potential

Ψ;Θ;∆ ` τ <: τ ′ Θ;∆ |= κ 6 κ ′

Ψ;Θ;∆ `M κ τ <: M κ ′ τ ′
sub-monad

Θ;∆ ` p : R+ Θ;∆ ` p ′ : R+

Ψ;Θ;∆ ` [p](τ1( τ2) <: ([p
′] τ1( [p ′ + p] τ2)

sub-potArrow

Ψ;Θ;∆ ` τ <: [0] τ
sub-potZero

Ψ;Θ, i : S;∆ ` τ <: τ ′

Ψ;Θ;∆ ` λti : S.τ <: λti : S.τ ′
sub-familyAbs

Θ;∆ ` I : S

Ψ;Θ;∆ ` (λti : S.τ) I <: τ[I/i]
sub-familyApp1

Θ;∆ ` I : S

Ψ;Θ;∆ ` τ[I/i] <: (λti : S.τ) I
sub-familyApp2

Figure 2.4: Selected subtyping rules
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M E TA - T H E O RY O F λa m o r

−

In this chapter we describe a model for λamor−’s types along with the key meta-
theoretic properties. This model not only gives a semantic interpretation to the types
of λamor− , but it is also used to prove the soundness of the type system.

Our model for λamor−’s types is based on the technique of step-indexed Kripke
logical relations [3]. The model for λamor− (Fig. 3.1) is described by defining three
mutually recursive relations: value relation, expression relation and substitution
relations for the linear and non-linear context. These relations make use of two ghost
states, the (available) potential (denoted by p) and the step-index (denoted by T ). The
step-index is a purely technical device that we use to make our relation well-founded.
The use of step-index is completely standard. The potential, on the other hand, is the
main interesting aspect of our model. As mentioned earlier, the purpose of potential
is to account for resource usage. Technically, the potential can be viewed as a Kripke
world.

The value relation (denoted by J.K) gives an interpretation to λamor− types in terms
of sets of triples of the form (p, T , v). The potential p specifies an upper-bound on the
potential required to construct the value v. The value relation is defined by nested
induction on types and the step-index.

The interpretation for the 1 (unit) type includes the only inhabitant denoted by (),
along with an arbitrary step-index and a potential. The interpretation for the base
type is similar. The interpretation for the list type is defined by a further induction on
list size: for a list of size 0 the value relation contains a nil value with any step-index
and any potential, while for a list of size s+ 1, the value relation consists of (p, T , v :: l)
s.t. the potential p suffices to give interpretation to the head (v) at type τ and the
tail (l) at type Lsτ. For a tensor (⊗) pair, both components can be used. Therefore,
the potential required to construct a tensor pair should be at least equal to the sum
of the potentials required to construct the components. For a with (&) pair, either
but not both of the components can be used. So we take the max1 of the potentials.

1 the max is not really needed because the model admits monotonicity on potentials

19
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J1K , {(p, T , ())}

JbK , {(p, T , v) | v ∈ JbK}

JL0τK , {(p, T , nil)}

JLs+1τK , {(p, T , v :: l)|∃p1,p2.p1 + p2 6 p ∧ (p1, T , v) ∈ JτK ∧ (p2, T , l) ∈ JLsτK}

Jτ1 ⊗ τ2K , {(p, T , 〈〈v1, v2〉〉) |

∃p1,p2.p1 + p2 6 p ∧ (p1, T , v1) ∈ Jτ1K ∧ (p2, T , v2) ∈ Jτ2K}

Jτ1 & τ2K , {(p, T , 〈v1, v2〉) | (p, T , v1) ∈ Jτ1K ∧ (p, T , v2) ∈ Jτ2K}

Jτ1 ⊕ τ2K , {(p, T , inl(v)) | (p, T , v) ∈ Jτ1K}∪ {(p, T , inr(v)) | (p, T , v) ∈ Jτ2K}

Jτ1( τ2K , {(p, T , λx.e) |

∀p ′, e ′, T ′<T .(p ′, T ′, e ′) ∈ Jτ1KE =⇒ (p+ p ′, T ′, e[e ′/x]) ∈ Jτ2KE}

J!τK , {(p, T , !e) | (0, T , e) ∈ JτKE}

J[n] τK , {(p, T , v) | ∃p ′.p ′ +n 6 p ∧ (p ′, T , v) ∈ JτK}}

JMnτK , {(p, T , v) |

∀n ′, v ′, T ′<T .v ⇓n ′T ′ v ′ =⇒ ∃p ′.n ′ + p ′ 6 p+n ∧ (p ′, T −T ′, v ′) ∈ JτK}

J∀α.τK , {(p, T ,Λ.e) | ∀τ ′, T ′<T .(p, T ′, e) ∈ Jτ[τ ′/α]KE}

J∀i.τK , {(p, T ,Λ.e) | ∀I, T ′<T .(p, T ′, e) ∈ Jτ[I/i]KE}

JC⇒ τK , {(p, T ,Λ.e) | . |= C =⇒ (p, T , e) ∈ JτKE}

JC&τK , {(p, T , v) | . |= C ∧ (p, T , v) ∈ JτK}

J∃s.τK , {(p, T , v) | ∃s ′.(p, T , v) ∈ Jτ[s ′/s]K}

Jλti.τK , f where ∀I. f I = Jτ[I/i]K

Jτ IK , JτK I

JτKE , {(p, T , e) | ∀ T ′<T , v.e ⇓T ′ v =⇒ (p, T − T ′, v) ∈ JτK}

JΓKE , {(p, T ,γ) | ∃f : Vars→ Pots.

(∀x ∈ dom(Γ). (f(x), T ,γ(x)) ∈ JΓ(x)KE) ∧ (
∑
x∈dom(Γ) f(x) 6 p)}

JΩKE , {(0, T , δ) | (∀x ∈ dom(Ω).(0, T , δ(x)) ∈ JτKE)}

Figure 3.1: Model of λamor− types
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Inhabitants of the sum (τ1 ⊕ τ2) type can be inhabitants of either τ1 using (inl) or τ2
using (inr). Thus, the required potential should be enough to handle both the cases.

Next, we explain the interpretation of the arrow type: (p, T , λx.e) is in the inter-
pretation of τ1( τ2 if for any expression e ′ in the (expression) interpretation of the
input type τ1 (with some potential p ′ and smaller step index T ′), we have (λx.e)e ′ or
equivalently e[e ′/x] in the (expression) interpretation of the result type τ2 with the
total potential i.e. p+ p ′ (p ′ coming from the substitution) and smaller step-index T ′

(as the application will consume at least one step).
The interpretation of polymorphic and the constraint type (C ⇒ τ) is based on

similar reasoning as that for the arrow type. However, an important point about
the interpretation of type-level quantification is the use of the step-index. Since
λamor− has impredicative quantification over types, we use the step-index to break
the circularity in the definition and make the relation well-founded. Such a use of
step-index is not new. It has been used in prior work like [48].

Next we explain the value relation for the exponential type: !e is in the interpre-
tation of !τ with some arbitrary potential and step-index iff e is in the (expression)
interpretation of τ the same step-index and 0 potential. It is important that the inhab-
itants of τ do not have any potential with them, because otherwise we can end-up
with infinite potential due to replication.

Next is the modal type [n] τ: (p, T , v) is in the interpretation of [n] τ iff the required
potential p is sufficient to account for n and the potential required for v. Note that the
same value v is in the interpretation of both τ and [n] τ, this justifies the ghost nature
of the potential at the term level.

Next comes the type for the graded monad. The idea is that the total required
resources, p+ κ (p which is required by the monadic value and κ which the monadic
value needs for forcing), should be enough to account for the actual cost of forcing
(κ ′) plus the potential (p ′) that is required for the resulting value (v ′).

Finally, we explain the interpretation for the type family (λti.τ). The type family is
a type-level function denoted by f s.t. when applied to some index I it yields a set
which is the interpretation of τ[I/i].

The remaining cases of the value relation described in Fig. 3.1 should be self-
explanatory.

The expression relation (denoted by J.KE) is defined by a set of triples consisting of a
potential, p, a step-index, T , and an expression e. Such a triple is in the interpretation at
type τ iff the value obtained after the pure reduction of e is in the value interpretation
of τ with the same potential (pure evaluations do not consume any resources). This
works because we use the monad to isolate cost effects. As a result, all the cost
checking is localized to the value relation of the monadic type (described above).
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Finally, we define the substitution relations for both the linear context (Γ ) and the
non-linear context (Ω). The two key points about the interpretation of Γ are: 1) there
exists a function mapping each variable to a potential value s.t. the substituted value
along with the corresponding potential is in the value relation of the type of that
variable and 2) the required potential p of the context is sufficient to account for the
required potential for the substitutions of all the variables. The interpretation for Ω is
much simpler. It only demands that the substituted value is in the interpretation of
the type of the variable at 0 potential.

The main meta-theoretic property of the model is described using the fundamental
theorem (Theorem 3). It basically states that if e is a syntactically well-typed expression
at type τ (obtained via typing rules) then e is also a semantically well-typed term at
the same type τ (i.e. is in the expression relation at type τ).

Theorem 3 (Fundamental theorem for λamor−). ∀Θ,Ω, Γ , e, τ, T ,pl,γ, δ,σ, ι.
Ψ;Θ;∆;Ω; Γ ` e : τ ∧ (pl, T ,γ) ∈ JΓ σιKE ∧ (0, T , δ) ∈ JΩ σιKE =⇒
(pl, T , e γδ) ∈ Jτ σιKE.

The proof of this theorem is by induction on the given typing judgment Ψ;Θ;∆;Ω; Γ `
e : τ with an additional induction on the step-index in the proof of the fixpoint combi-
nator. Theorem 1 and Theorem 2 are direct corollaries of this fundamental theorem.

We can derive several interesting corollaries about the execution cost directly from
this fundamental theorem. For instance, for an open term which only partially uses
the input potential and saves the rest with the result, we can derive the cost bounds
as stated in Corollary 4. Basically we derive an upper-bound on the cost of execution
of e applied to unit (written e ()). The total available potential here is q+ pl (q units
are required by e and pl units are given to us from the linear substitution γ). The
total remaining potential after the execution is q ′ + pv (refer to the interpretation of
the modal type described earlier). The corollary basically shows that the consumed
(available minus remaining) potential is a good upper-bound on the cost of execution
(denoted by J). We will show an interesting use of this corollary for giving an alternate
(semantic) proof of soundness of Univariate RAML in Chapter 5.

Corollary 4. ∀Γ , e,q,q ′, τ,pl,γ, J, vt, v.
.; .; .; .; Γ ` e : [q] 1(M 0 ([q ′] τ) ∧ (pl, _,γ) ∈ JΓKE ∧ e () γ ⇓ vt ⇓J v =⇒
∃pv. (pv, _, v) ∈ JτK ∧ J 6 (q+ pl) − (q ′ + pv)
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E X A M P L E S

In this chapter we describe various examples of type-based amortized analysis in
λamor− . All the examples described below have been type checked in λamor− but
we do not describe the typing derivations here. They can be found in the technical
report [52].

4.1 map

For our first example, we show the standard list map function assuming that the cost
of applying the mapping function is a fixed c units. We show that such a function
can be mapped over a list of length n each of whose elements comes with a potential
of c units. We show how these requirements can be encoded purely in the types of
λamor− . The type and the term for map are described as follows:

map : ∀n, c.!(τ1(M c τ2)( Ln([c] τ1)(M 0 (Lnτ2)

fix map.Λ.Λ.λgl.
let !gu = g in
match l with
|nil 7→ retnil
|h :: t 7→
releasehe = h in
bindhn = gu he in
bind tn = map[][] !gu t in
rethn :: tn

Listing 4.1: map in λamor−

The type ofmap is polymorphic in the length of the list (n) and the cost (c) required
for every application of the mapping function. The type of the mapping function is
given by !(τ1(M c τ2). There is an exponential as the function has to be applied on
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all elements of the given list. The c in the return type of the mapping function, M c τ2,
is the cost of each application. This is the standard way of encoding an effectful
function using a cost monad. Alternatively, we could also have stipulated a mapping
function of the type !([c] τ1 ( M 0 τ2). λamor− supports both encodings. We have
found the latter to be more expressive in some cases, e.g., the Church encoding in
Section 4.3 and embedding of a relatively complete type system in Chapter 7. The list
type denoted by Ln([c] τ1) indicates that every element in the list of length n carries a
potential of c units. The return type of map, M 0 (Lnτ2), indicates that a list of length
n and type τ2 is returned and there is no additional cost requirement (as the potential
coming from the list elements suffices for the cost of the mapping function). The term
for the map function is usual. It returns a nil when the input list is empty, otherwise
it returns a list of elements obtained after applying the given mapping function on
each element of the given list.

Note that no version of the prior work RAML [27, 29, 30] can encode this example
as it uses a higher-order function. Prior work AARA [28] can encode this example if
aggregate potential of n ∗ c is associated with the list as a whole. This is because it
cannot associate potential with arbitrary types.

4.2 append

Our next example is an encoding of a list append function where we assume to incur
a unit cost for every cons (::) operation.

append : ∀n1,n2.Ln1([1] τ)( Ln2τ(M 0 (Ln1+n2τ)

fix append.Λ.Λ.λl1l2. match l1 with
|nil 7→ ret(l2)
|h :: t 7→
releasehe = h in
bind te = append[][] t l2 in
bind− = ↑1 in rethe :: te

Listing 4.2: append in λamor−

The type of append is polymorphic in the lengths of the two lists. Every element of
the first list comes with a potential of one unit, indicated by the type (Ln1([1] τ)). This
potential is released and consumed for every cons operation and hence no additional
potential is required, nor is any potential left after the operation finishes. Note the
return type M 0 (Ln1+n2τ), which has a 0 cost. The term of the append function is
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self-explanatory. It releases the potential which is available at the head of the list and
consumes it using the tick construct, modeling the cost for performing a cons.

An interesting aspect of this example regards partial application. If append is
partially applied (with just the first list) then the closure created will capture potential
in it. So, if this closure gets used more than once this will lead to duplicating the
stored potential. This cannot happen in λamor− because of affineness. Prior work
including RAML [27, 29, 30] and AARA [28, 33] cannot handle this kind of partial
application. However, if this example is rewritten s.t. the potential is associated with
only the last argument then [33] would be able to type check it. [28], on the other
hand completely ignores partial applications and forces atomic full application for
Curried functions.

4.3 church encoding

Our next example shows how to type Church numerals and operations on them.
Typing these constructions require non-trivial use of type and index families. The
type we give to Church numerals is both general and expressive enough to encode
and give precise cost to operations like addition, multiplication and exponentiation.

To begin, let us first consider the typing of Church numerals without any cost. To
recap, Church numerals encode natural numbers using function applications. For
example, a Church zero is defined as λf.λx.x (with zero applications), a Church one
as λf.λx.f x (with one application), a Church two as λf.λx.f f x (with two applications)
and so on. To type a Church numeral, we must specify a type for f. We assume that
we have an N-indexed family of types α and f maps α i to α (i+ 1) for every i. Then,
the nth Church numeral, given such a function f, maps α 0 to α n.

Next, we consider costs. Here, we are interested in counting a unit cost for every
function application. We want to encode the precise costs of operations like addition,
multiplication in their types. Classically these operations are defined using, for
instance, a successor function for f in the case of addition, an addition function for
f in the case of multiplication and so on. Therefore, in the type of Church nat we
must also account for the cost of f in a general way to allow for such compositional
definitions. This cost is specified using a cost family C from N to R+. The cost of
applying f depends on the index of the argument (called jn below). Then, given such
a f, the nth Church numeral maps α 0 to α n with cost C 0+ . . .+ C (n− 1) + n,
where each C i is the cost of using f the ith time and the last n is the cost of the
n applications in the definition of the nth Church numeral. Our type for Church
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numerals captures exactly this intuition. The full type of a Church number is given as
follows:

Nat = λtn.∀α : N→ Type.∀C : N→ R+.
!(∀jn.((α jn ⊗ [C jn] 1)(M 0 (α (jn + 1))))(

M 0 ((α 0 ⊗ [(C 0+ . . .+C (n− 1) +n)] 1)(M 0 (α n))

We describe a term for the Church one (denoted by 1) that corresponds to the type
Nat 1. Since 1 consists of only one application, we only need an input potential of
(C 1) + 1 in the type, all of which gets consumed. For simplification, define a notation
to indicate consumption of a unit potential with an application: e1 ↑1 e2 , bind− =

↑1 in e1 e2. The Church one is defined as follows:

1 : Nat 1
1 , Λ.Λ.λf.

ret (λx. let !fu = f in
let 〈〈y1,y2〉〉 = x in

release− = y2 in
binda = store() in
fu 0 ↑1〈〈y1,a〉〉)

Listing 4.3: Encoding of the Church numeral “1” in λamor−

The term corresponding to the Church one takes the input pair x and obtains the
value and the potential from it. It then releases the potential and stores it on a, which
is then used to apply f just once.

Let us now see the type and the encoding for Church addition. Church addi-
tion is defined using a successor function (succ) which is also defined and type-
checked in λamor− , but whose details we elide here. It is just enough to know that
the cost of successor under the chosen cost model is two units, succ : ∀n. [2] 1 (
M 0 (Nat[n](M 0Nat[n+ 1]). An encoding of Church addition (add) in λamor− is
described in Listing 4.4. The type of add takes the required potential (4 ∗n1+ 2) units
along with two Church naturals (Nat n1 and Nat n2) as arguments and computes their
sum. The potential of (4 ∗n1 + 2) units corresponds to the precise cost of performing
the Church addition under the chosen cost model. The whole type is parameterized
on n1 and n2.

add : ∀n1,n2. [(4 ∗n1 + 2)] 1(M 0 (Nat n1(M 0(Nat n2(M 0Nat (n1 +n2)))
add , Λ.Λ.λp.

ret (λN1. ret (λN2.
release− = p in

binda = E1 in E2))
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E1 , N1 [] [] ↑1 !(Λ.λt. let 〈〈y1,y2〉〉 = t in
release− = y2 in

bindb1 = (bindb2 = store() in
(succ [] b2)) in b1 ↑1 y1)

E2 , bindb = store() in a ↑1〈〈N2,b〉〉

Listing 4.4: Encoding of the Church addition in λamor−

Besides add and succ we have encoded the Church multiplication and exponen-
tiation operations (described along with their typing derivations in the technical
report [52]). Their definitions follow similar composition patterns as for succ and
add. Having such a general type for Church numerals which can encode the precise
cost of Church operations shows the expressive power of λamor− . We are not aware
of such a general encoding in a pure monadic system without potentials.

4.4 eager functional queue

As explained in Chapter 1, eager functional queues are implemented using two stacks
represented by lists, say l1 and l2. Enqueue is implemented as a push on l1. Dequeue
is implemented as a pop from l2 if it is non-empty. If l2 is empty, then the contents of
l1 are transferred to l2 and the new l2 is popped. The transfer from l1 to l2 reverses l1,
thus changing the stack’s LIFO semantics to a queue’s FIFO semantics. We describe the
encoding of this functional queue, assuming a unit cost for every list cons operation.

The amortized analysis of functional queues works by accounting for the cost of
dequeuing an element at the time it is enqueued. This is sound because an enqueued
element can be dequeued at most once. Concretely, the enqueue operation takes
a potential of 3 units, 1 of which is used by the enqueue operation itself and the
remaining 2 are stored with the element in the list l1 to be used later in the dequeue
operation if required. This is reflected in the type of enqueue. The term for enqueue
is obvious so we skip it here.
enq : ∀m,n. [3] 1( τ( Ln([2] τ)( Lmτ(M 0 (Ln+1([2] τ) ⊗ Lmτ)
The dequeue operation (denoted by dq below) is a bit more involved. The con-

straints in the type of dequeue reflect a) dequeue can only be performed on a
non-empty queue, i.e., if m+n > 0 and b) the sum of the lengths of the resulting list
is only 1 less than the length of the input lists, i.e., ∃m ′,n ′.((m ′ +n ′ + 1) = (m+n)).
The full type and the term for the dequeue operation are described in Listing 4.5.
Dequeue makes use of a function move which performs the job of inserting the
elements of first list into the second one in reverse order. We skip the description
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of move. Type-checked terms for enqueue, dequeue and move can be found in the
technical report [52].

dq : ∀m,n.(m+n > 0)⇒ Lm([2] τ)(

Lnτ(

M 0 (∃m ′,n ′.((m ′ +n ′ + 1) = (m+n))&(Lm
′
[2] τ ⊗ Ln ′τ))

dq , Λ.Λ.Λ.λ l1 l2. match l2 with
|nil 7→ bind lr = move [][] l1 nil in

match lr with
|nil 7→ fix x.x
|hr :: l

′
r 7→ retΛ.〈〈nil, l ′r〉〉

|h2 :: l
′
2 7→ retΛ.〈〈l1, l ′2〉〉

Listing 4.5: Dequeue operation for eager functional queue in λamor−

4.5 okasaki’s implicit queue

Next we describe an encoding of a lazy data structure, namely, Okasaki’s implicit
queue[49]. An implicit queue is an instance of implicit recursive slowdown [49], which
is an efficient way of encoding algorithms by incrementally computing (encoded
using laziness) over data. An implicit queue can be a shallow queue consisting of
zero or one element, or, it can be a deep queue consisting of three parts namely
front, middle and rear. Okasaki represents the front part as consisting of one or two
elements, middle part as a suspended implicit queue of pairs and the rear part as
consisting of zero or one element. Okasaki uses the method of debits [49] to analyze
the amortized cost of operations like head, tail and snoc, counting the number of
recursive calls in them.

To encode implicit queue in λamor− , we describe the different ways of constructing
it using six value constructors. We show that by adding these constructors along
with a construct to case analyze them to λamor− , we are not only able to succinctly
represent Okasaki’s implicit queue but also show how to encode the method of debits
for amortized analysis of snoc, head and tail.

The types for the six value constructors (C0 - C5) are described in Fig. 4.1. C0 and
C1 correspond to the two ways of creating a shallow queue, while C2 to C5 correspond
to the four ways of representing a deep queue. Constructors corresponding to the
deep queue also carry a potential argument in their first position. They correspond to
the debit invariants that Okasaki uses for the cost analysis of head, tail and snoc. We
use a different cost model than Okasaki. We count unit cost for every case analysis on
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the implicit queue, because it is easier to represent. It turns out that the same debit
invariants are sufficient for our cost model too. This is because every recursive call
is always preceded by a case analysis in this implementation, resulting in the same
amortized cost in both the cost models.

C0 : Queue τ

C1 : τ( Queue τ

C2 : [1] 1(M 0 (τ⊗Queue(τ ⊗ τ))( Queue τ

C3 : [0] 1(M 0 (τ⊗Queue(τ ⊗ τ)⊗ τ)( Queue τ

C4 : [2] 1(M 0 ((τ⊗ τ)⊗Queue(τ ⊗ τ))( Queue τ

C5 : [1] 1(M 0 ((τ⊗ τ)⊗Queue(τ ⊗ τ)⊗ τ)( Queue τ

Figure 4.1: Value constructors for Okasaki’s implicit queue

As an example, we describe the implementation of a function which we use to
obtain both the head and tail of a queue in Listing 4.6. It has an amortized cost of
three units as indicated by the type. It basically works by case analyzing the input
queue and returning the head and tail after accounting for the cost. We release the
input potential of three units and consume one to account for the cost of case analysis.
The remaining two units are either discarded or are consumed by the different cases
in the implementation. The cases corresponding to the shallow queue are very simple:
they both discard the remaining potential. When the input queue is C0, then we
return false denoted by fix x.x (as it is not possible to take the head and tail of an
empty queue). When the input queue is C1 x then we return a pair of x and the empty
queue.

The remaining cases (the ones corresponding to the deep queue) force the corre-
sponding suspension by providing the right amount of potential and obtaining the
head and tail from it. We only explain one of the cases corresponding to C3 here.
From Fig. 4.1 we know that the suspension in C3 needs zero units of potential to
be forced. So we store zero units of potential in p ′ and the remaining two units of
potential from the input are stored in po (this will be used later in obtaining the tail).
We then force the suspension denoted by x to obtain the front (f), middle (m) and
rear (r). The front f is just returned as the head while tail is constructed using the
constructor C5. Inside the suspension of C5 we have one unit of additional potential
available to us via p ′′. We use this one unit of potential from p ′′ along with the two
units of potential available from po to obtain a total of three units of potential to
make a recursive call on the middle part to obtain the head and tail for the tail of the
middle queue (m). This finishes the implementation corresponding to this case. The
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implementation for the C2 case is similar, while those for C4 and C5 do not make any
recursive calls.

An important point of comparison with Okasaki’s encoding is that Okasaki works
in a non-affine setting (unlike ours) and hence he uses the same middle queue twice
to obtain the head and tail, which we cannot since λamor− is an affine language. This
is the reason for writing a combined function to obtain both (individual head and tail
functions are just written as projection functions on top of this combined function).

headTail : [3] 1( ∀α.Queue α(M 0 (α ⊗ Queue α)
headTail , fix HT .λp.Λ.λ q.
− = releasep in − = ↑1 in ret
case q of
|C0 7→ fix x.x

|C1 x 7→ ret〈〈x, C0〉〉

|C2 x 7→
bindp ′ = store() in bindpo = store() in
bind x ′ = x p ′ in let〈〈f,m〉〉 = x ′ in
ret〈〈f, (C4 (λp ′′.− = releasepo in − = releasep ′′ in bindpr = store() in HT pr [] m))〉〉

|C3 x 7→
bindp ′ = store() in bindpo = store() in
bind x ′ = x p ′ in let〈〈fm, r〉〉 = x ′ in let〈〈f,m〉〉 = fm in
ret〈〈f, (C5 (λp ′′.− = releasepo in − = releasep ′′ in

bindp ′′′ = store() in bindht = HT p ′′′ [] m in ret〈〈ht, r〉〉))〉〉

|C4 x 7→
bindp ′ = store() in bind x ′ = x p ′ in let〈〈f,m〉〉 = x ′ in let〈〈f1, f2〉〉 = f in
ret〈〈f1, C2 (λp ′′. ret〈〈f2,m〉〉)〉〉

|C5 x 7→
bindp ′ = store() in bind x ′ = x p ′ in let〈〈fm, r〉〉 = x ′ in let〈〈f,m〉〉 = fm in let〈〈f1, f2〉〉 = f in

ret〈〈f1, (C3 (λp ′′. ret〈〈〈〈f2,m〉〉, r〉〉))〉〉

Listing 4.6: Function to obtain head and tail

The technical report [52] contains full typing derivations for the headTail, head,
tail and snoc operations.
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E M B E D D I N G U N I VA R I AT E R A M L

Resource Aware ML (RAML) [29, 32] is a type and effect system for amortized analysis
of OCaml programs using the method of potentials [18, 55]. It basically works by
associating potential with specific datatypes like list and trees. This potential is made
available for consumption when an expression is eliminated. The potential in RAML
is specified as a function of the size of the inputs. Many versions of RAML exist.
For instance, [30] supports linear potentials, [29] supports univariate polynomial
potentials and [27] supports multivariate polynomial potentials. Potentials in λamor−

are very different. They are more general and not just limited to the sizes of the
inputs. Also, λamor− do not restrict potentials to datastructures only. They can be
associated to arbitrary types using the modal type constructor (as described earlier).
The main motivation for showing an embedding of RAML is three fold: 1) we want to
show that λamor− is more expressive than RAML and thus can be used to analyze
all examples that have been tried on RAML, 2) we want to show that the potential-
handling approach of λamor− is more general than RAML’s and therefore RAML-style
potentials can be captured in λamor− and finally 3) we want to show that λamor− ,
despite being a call-by-name framework, can embed RAML which is a call-by-value
framework.

In this chapter we describe an embedding of Univariate RAML [29, 32] (which
subsumes Linear RAML) into λamor− . We leave embedding multivariate RAML to
future work but anticipate no fundamental difficulties in doing so.

5.1 brief primer on univariate raml

We give a brief primer of Univariate RAML [29, 32] here. The key feature of Univariate
RAML is an ability to encode univariate polynomials in the size of the input data as
potential functions. Such functions are expressed as non-negative linear combinations
of binomial coefficients

(
n
k

)
, where n is the size of the input data structure and k

is some natural number. Vector annotations on the list type L~qτ, for instance, are
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used as a representation of such univariate polynomials. The underlying potential
on a list of size n and type L~qτ can then be described as φ(~q,n) ,

∑
16i6k

(
n
i

)
qi

where ~q = {q1 . . . qk}. The authors of RAML show using the properties of binomial
coefficients, that such a representation is amenable to an inductive characterization
of polynomials which plays a crucial role in setting up the typing rules of their
system. If ~q = {q1 . . . qk} is the potential vector associated with a list then /(~q) =

{q1 + q2,q2 + q3, . . . qk−1 + qk,qk} is the potential vector associated with the tail of
that list. Trees follow a treatment similar to lists. Base types (unit, bools, ints) have
zero potential and the potential of a pair is just the sum of the potentials of the
components. A snippet of the definition of the potential function Φ(a : A) (from [32])
is described below.

Φ(a : A) = 0 where A = {unit, int,bool}

Φ([] : L~qA) = 0

Φ((a1,a2) : (A1,A2)) = Φ(a1 : A1) +Φ(a2 : A2)

Φ((a :: `) : L~qA) = q1 +Φ(a : A) +Φ(` : L/~qA)

where ~q = {q1 . . . qk}

A type system is built around this basic idea with a typing judgment of the form
Σ; Γ `qq ′ er : τ where Γ is a typing context mapping free variables to their types, Σ is a
context for function signatures mapping a function name to a type (this is separate
from the typing context because RAML only has first-order functions that are declared
at the top-level), q and q ′ denote the statically approximated available and remaining
potential before and after the execution of er, respectively, and τ is the zero-order type
of er. Vector annotations are specified on list and tree types (as mentioned above).
Types of first-order functions follow an intuition similar to the typing judgment above.

τ1
q/q ′→ τ2 denotes the type of a first-order RAML function which takes an argument

of type τ1 and returns a value of type τ2. q units of potential are needed before this
function can be applied and q ′ units of potential are left after this function has been
applied. Intuitively, the cost of the function is upper-bounded by (q+potential of
the input) - (q ′+potential of the result). Fig. 5.1 describe typing rules for function
application and list cons. The app rule type-checks the function application with
an input and remaining potential of (q+Kapp1 ) and (q ′ −Kapp2 )1 units, respectively.
RAML divides the cost of application between Kapp1 and Kapp2 units. Of the available
q+Kapp1 units, q units are required by the function itself and Kapp1 units are consumed

1 Every time a subtraction like (I− J) appears, RAML implicitly assumes that there is a side condition
(I− J) > 0.
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before the application is performed. Likewise, of the remaining q ′ − Kapp2 units, q ′

units are made available from the function and Kapp2 units are consumed after the
application is performed. The cons rule requires an input potential of q+ p1 +Kcons

units of which p1 units are added to the potential of the resulting list and Kcons units
are consumed as the cost of performing this operation.

τ1
q/q ′→ τ2 ∈ Σ(f)

Σ; x : τ1 `
q+Kapp1

q ′−Kapp2

f x : τ2
app

~p = (p1, . . . ,pk)

Σ; xh : τ, xt : L(/ ~p)τ `q+p1+Kconsq cons(xh, xt) : L~pτ
cons

Figure 5.1: Selected type rules of Univariate RAML from [32]

Soundness of the type system is defined by Theorem 5. Soundness is defined for
top-level RAML programs (formalized later in Definition 7), which basically consist of
first-order function definitions (denoted by F) and the "main" expression e, which uses
those functions. Stack (denoted by V) and heap (denoted by H) are used to provide
bindings for free variables and locations in e.

Theorem 5 (Univariate RAML’s soundness). ∀H,H ′,V , Γ ,Σ, e, τ, sv,p,p ′,q,q ′, t.
P = F, e is a RAML top-level program and
H |= V : Γ ∧ Σ, Γ `qq ′ e : τ ∧ V ,H `pp ′ e ⇓t

sv,H ′ =⇒ p− p ′ 6 (ΦH,V(Γ) +q) − (q ′+

ΦH(
sv : τ))

5.2 type-directed translation

As mentioned above, types in Univariate RAML include types for unit, booleans,
integers, lists, trees, pairs and first-order functions. Without loss of generality we
introduce two simplifications: 1) we abstract RAML’s bool and int types into an
arbitrary base type denoted by b and 2) we just choose to work with the list type only
ignoring trees. These simplifications only make the development more concise as we
do not have to deal with the redundancy of treating similar types again and again.

The translation from Univariate RAML to λamor− is type-directed. We describe
the type translation function (denoted by L.M) from RAML types to λamor− types in
Fig. 5.2.

Since RAML allows for full replication of unit and base types, we translate RAML’s
base type, b, into !b of λamor− . But translation of the unit type does not need a !, as 1
and !1 are isomorphic in λamor− . Unlike the unit and base type of RAML, the list type
does have some potential associated with it, indicated by ~q. Therefore, we translate
RAML’s list type into a pair type composed of a modal unit type carrying the required
potential and a λamor− list type. Since the list type in λamor− is refined with size, we
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LunitM = 1

LbM = !b

LL~q τM = ∃s.([φ(~q, s)] 1 ⊗ LsLτM)

L(τ1, τ2)M = (Lτ1M ⊗ Lτ2M)

Lτ1
q/q ′→ τ2M = [q] 1( Lτ1M(M 0 ([q ′] Lτ2M)

Figure 5.2: Type translation of Univariate RAML

add an existential on the pair to quantify the size of the list. The potential captured by
the unit type must equal the potential associated with the RAML list (this is indicated
by the function φ(~q, s)). The function φ(~q, s) corresponds to the one that RAML uses
to compute the total potential associated with a list of s elements, which we described
above. Note the difference in how potentials are managed in RAML vs how they are
managed in the translation. In RAML, the potential for an element gets added to the
potential of the tail with every cons operation and, dually only the, potential of the
head element is consumed in the match operation. The translation, however, does not
assign potential on a per-element basis, instead the aggregate potential is captured
using the φ function and the translations of the cons and the match expressions work
by adding or removing potential from this aggregate. We believe a translation which
works with per element potential is also feasible but we would need an additional
index to identify the elements of the list in the list data type.

We translate a RAML pair type into a tensor (⊗) pair. This is in line with how
pairs are treated in RAML (both elements of the pair are available on elimina-

tion). Finally, a function type τ1
q/q ′→ τ2 in RAML is translated into the function type

[q] 1( Lτ1M(M 0 ([q ′] Lτ2M). As in RAML, the translated function type also requires
a potential of q units for application and a potential of q ′ units remains after the
application. The monadic type is required because we cannot release/store potential
without going into the monad. The translation of typing contexts is defined pointwise
using the type translation function.

We use this type translation function to produce a translation for Univariate RAML
expressions by induction on RAML’s typing judgment. The translation judgment is
Σ; Γ `qq ′ er : τ  ea. It basically means that a well-typed RAML expression er
is translated into a λamor− expression ea. The translated expression is of the type
[q] 1(M 0 ([q ′]LτM). We only describe the app rule here (Fig. 5.3). Since we know that
the desired term must have the type [q+Kapp1 ] 1(M 0 ([q ′ −Kapp2 ]LτM), the translated
term is a function which takes an argument, u, of the desired modal type and releases
the potential to make it available for consumption. The continuation then consumes
K
app
1 potential that leaves q − Kapp1 potential remaining for bindP = store() in E1.

We then store q units of potential with the unit and use it to perform a function
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application. We get a result of type M 0 ([q ′] Lτ2M). We release these q ′ units of potential
and consume Kapp2 units from it. This leaves us with a remaining potential of q ′−Kapp2

units. We store this remaining potential with f2 and box it up in a monad to get the
desired type. Translations of other RAML terms (which we do not describe here)
follow a similar approach. The entire translation is intuitive and relies extensively on
the ghost operations store and release at appropriate places.

Σ; . `q+Kunitq () : unit λu.release− = u in bind− = ↑Kunit in binda = store() in ret(a)
unit

Σ; . `q+Kbaseq c : b λu.release− = u in bind− = ↑Kbase in binda = store(!c) in ret(a)
base

Σ; x : τ `q+Kvarq x : τ λu.release− = u in bind− = ↑Kvar in binda = store x in ret(a)
var

τ1
q/q ′→ τ2 ∈ Σ(f)

Σ; x : τ1 `
q+Kapp1

q ′−Kapp2

f x : τ2  λu.release− = u in bind− = ↑K
app
1 in bindP = store() in E1

app

where
E1 = bind f1 = (f P x) in release f2 = f1 in bind− = ↑K

app
2 in bind f3 = store f2 in ret f3

Σ; ∅ `q+Knilq nil : L~pτ 
λu.release− = u in bind− = ↑Knil in binda = store() in bindb = store〈〈a, nil〉〉 in ret(b)

nil

~p = (p1, . . . ,pk)

Σ; xh : τ, xt : L(/ ~p)τ `q+p1+Kconsq cons(xh, xt) : Lpτ λu.release− = u in bind− = ↑Kcons in E0
cons

where
E0 = xt; x. let〈〈x1, x2〉〉 = x in E1
E1 = release− = x1 in binda = store() in bindb = store〈〈a, xh :: x2〉〉 in ret(b)

Figure 5.3: Expression translation: Univariate RAML to λamor

We show that the translation is type-preserving by proving that the obtained λamor−

terms are well-typed (Theorem 6). The proof of this theorem works by induction on
RAML’s type derivation.
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Theorem 6 (Type preservation: Univariate RAML to λamor−). If Σ; Γ `qq ′ e : τ in
Univariate RAML then there exists e ′ such that Σ; Γ `qq ′ e : τ  e ′ and there is a

derivation of .; .; .; LΣM, LΓM ` e ′ : [q] 1(M 0 ([q ′]LτM) in λamor− .

As mentioned earlier, RAML only has first-order functions which are defined at the
top-level. So, we need to lift this translation to the top-level. Definition 7 defines the
top-level RAML program along with the translation.

Definition 7 (Top level RAML program translation). Given a top-level RAML program
P , F, emain where F , f1(x) = ef1, . . . , fn(x) = efn s.t.
Σ, x : τf1 `q1q ′1 ef1 : τ

′
f1 . . . Σ, x : τfn `qnq ′n efn : τ ′fn and Σ, Γ `qq ′ emain : τ

where Σ = f1 : τf1
q1/q

′
1→ τ ′f1, . . . , fn : τfn

qn/q
′
n→ τ ′fn

The translation of P, denoted by P, is defined as (F, et) where
F = fix f1.λu.λx.et1, . . . , fix fn.λu.λx.etn s.t.
Σ, x : τf1 `q1q ′1 ef1 : τ

′
f1  et1 . . . Σ, x : τfn `qnq ′n efn : τ ′fn  etn and

Σ, Γ `qq ′ emain : τ et

5.3 semantic properties of the embedding

Besides type-preservation, we additionally : 1) prove that our translation preserves se-
mantics and cost of the source RAML term and 2) re-derive RAML’s soundness result
using λamor−’s fundamental theorem (Theorem 3) and properties of the translation.
This is a sanity check to ensure that our type translation preserves cost meaningfully
(otherwise, we would not be able to recover RAML’s soundness theorem in this way).

Semantics and cost preservation is formally stated in Theorem 8, which can be read
as follows: if es is a closed source (RAML) term which translates to a target (λamor−)
term et and if the source expression evaluates to a value (and a heap H, because
RAML uses imperative boxed data structures) then the target term after applying to a
unit (because the translation is always a function) can be evaluated to a value tvf via
pure (⇓) and forcing (⇓J) relations s.t. the source and the target values are the same
and the cost of evaluation in the target is at least as much as the cost of evaluation in
the source.

Theorem 8 (Semantics and cost preservation). ∀H, e, sv,p,p ′,q,q ′.
.; . `qq ′ es : b et ∧ ., . `pp ′ e ⇓

sv,H =⇒
∃tvf, J.et() ⇓ _ ⇓J tvf ∧ sv = tvf ∧ p− p ′ 6 J

The proof of Theorem 8 is via a cross-language relation between RAML and
λamor− terms. The relation is complex because it has to relate RAML’s imperative
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data structures (like list which is represented as a chain of pointers in the heap)
with λamor− ’s purely functional datastructures. The cross-language relation relating
Univariate RAML and λamor− terms is described in Fig. 5.4

bunitcHV , {(T , sv, tv) | sv ∈ JunitK∧ tv ∈ J1K∧ sv = tv}

bbcHV , {(T , sv, !tv) | sv ∈ JbK∧ tv ∈ JbK∧ sv = tv}

b(τ1, τ2)cHV , {(T , `, 〈〈tv1, tv2〉〉) | H(`) = (sv1, sv2) ∧ (T , sv1, tv1) ∈ bτ1cV ∧ (T , sv2, tv2) ∈ bτ2cV}

bL~qτcHV , {(T , `s, 〈〈(), lt〉〉) | (T , `s, lt) ∈ bL τcHV }

where

bL τcHV , {(T ,NULL, nil)}}∪

{(T , `, tv :: lt) | H(`) = (sv, `s) ∧ (T , sv, tv) ∈ bτcV ∧ (T , `s, lt) ∈ bL τcV}

bτ1
q/q ′→ τ2cH , {(T , f(x) = es, fix f.λu.λx.et) | ∀sv ′, tv ′, T ′<T .

(T ′, sv ′, tv ′) ∈ bτ1cHV =⇒ (T ′, es, et[()/u][tv ′/x][fix f.λu.λx.et/f]) ∈ bτ2c
{x 7→sv ′},H
E }

bτcV ,H
E , {(T , es, et) | ∀H ′, sv,p,p ′, t <T . V ,H `pp ′ es ⇓t

sv,H ′ =⇒

∃tvt, tvf, J.et ⇓− tvt ⇓J− tvf ∧ (T −t, sv, tvf) ∈ bτcH
′

V ∧ p− p ′ 6 J}

bΓcHV = {(T ,V , δt) | ∀x : τ ∈ dom(Γ).(T ,V(x), δt(x)) ∈ bτcHV }

bΣcHV = {(T , δsf, δtf) | (∀f : (τ1
q/q ′→ τ2) ∈ dom(Σ).(T , δsf(f) δsf, δtf(f) δtf) ∈ b(τ1

q/q ′→ τ2)cH)}

Figure 5.4: Cross language model: Univariate RAML to λamor

We define a value relation (denoted by b.cHV ) for relating a RAML value with a
λamor− value. It is defined by induction on the source (univariate RAML) types.
Notice that the value relation is indexed with a heap H. This is done to accommodate
heap-based implementation of lists in RAML. From the type translation we know
that a RAML list is translated into a pair consisting of a unit and a λamor− list (we
do not have an explicit intro form for existential types). Therefore, the value relation
for the list type must relate a RAML list denoted by `s with a λamor− pair denoted
by 〈〈(), lt〉〉 s.t. `s and lt are related at the L τ (list type without the potential). The
value interpretation of L τ relates a RAML NULL value to a nil in λamor− and relates
the two lists pointwise at type τ after dereferencing the location ` in the heap H. The
other cases of the value relation are obvious.

RAML only has first-order functions. This is incorporated in the model by defining

a separate relation for the arrow type: bτ1
q/q ′→ τ2cH (notice the absence of the subscript
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V). From the type translation we know that RAML’s arrow type (τ1
q/q ′→ τ2) is translated

to a λamor− type [q] 1( Lτ1M(M 0 ([q ′] Lτ2M). Also, the first-order only restriction
does not preclude RAML from having recursion. Therefore, a RAML first-order
function, f(x) = es, is related to a λamor− fixpoint over a function, fix f.λu.λx.et. The
rest of the definition basically says that if we supply related values as arguments to
the two functions then es is related to et[()/u][fix f.λu.λx.et/f] with those arguments
as substitutions for x under the expression relation (described next). Note that the
potential on the source type does not play any role in the cross-language model. The
potential is only relevant for the type translation (as explained above).

RAML’s expression evaluation is defined wrt substitutions for free variables and
locations in a RAML expression as mentioned earlier. The substitutions for variables
are performed using a stack V and, for locations, substitution is performed using a
heap H. Like the value relation, the expression relation is also indexed with a heap H
but, additionally, it is also indexed with a stack V for reasons we just explained. It
basically relates a RAML expression to a λamor− expression s.t. if the given RAML
expression terminates to a value v and heap H ′ by consuming p− p ′ resources, then
the related λamor− term must also terminate to some value vf s.t. the two resulting
values are related under the value relation at the obtained heap (H ′). Also the cost
consumed (J) in λamor− is at least the cost consumed by the evaluation of related
RAML expression.

We also need a relation for relating substitutions for zero-order terms (bΓcHV ) and
first-order functions (bΣcHV ). The bΓcHV relation is obvious but bΣcHV needs a comment.
First-order functions can refer to other functions and to themselves (because of
recursion). The self-reference would be a bound variable but reference to other
functions would involve a free occurrence of a function name. This is the reason we
apply the substitution (both the source and target) when we relate the functions at

the bτ1
q/q ′→ τ2cH relation. We have not explained the use of step-index in the model

yet. It is used for a particular proof which we explain later.
We prove the model sound by proving the fundamental theorem (Theorem 9).

Theorem 9 (Fundamental theorem of RAML to λamor− translation).
∀Σ, Γ ,q,q ′, τ, es, et, I,V ,H, δt, δsf, δtf, T .
Σ; Γ `qq ′ es : τ et ∧ (T ,V , δt) ∈ bΓcHV ∧ (T , δsf, δtf) ∈ bΣcHV =⇒
(T , esδsf, et () δtδtf) ∈ bτcV ,H

E

Note that the theorem relates the given RAML expression es to a unit-applied
translation of es. This is because from Theorem 6 we know that a well-typed translated
term is always a function at the top-level. The proof of this theorem works by induction



5.3 semantic properties of the embedding 39

on RAML’s typing derivation. There are two consequences of this fundamental
theorem: a) we have shown that the translation preserves semantics and b) the cost
of execution of the translated term in λamor− is lower bounded by the cost of the
execution in RAML. The extra cost could be due to administrative reductions.

Finally, we re-derive RAML’s soundness (Theorem 5) in λamor− using λamor−’s
fundamental theorem and the properties of the translation. To prove this theorem, we
obtain a translated term corresponding to the term e (of Theorem 5) via our translation.
Then, using Theorem 8, we show that the cost of forcing the unit application of the
target is lower-bounded by p− p ′. After that, we use Corollary 4 to obtain the upper-
bound on p− p ′ as required in the statement of Theorem 5.





6
F R O M λa m o r

−
T O λa m o r ( F U L L )

Recall the Church encoding from Section 4.3. A Church numeral always applies the
function argument a finite number of times. However, the type that we assigned to
Church numeral specified an unbounded number of copies for the function argument.
Similarly, the index jn can only take n unique values in the range 0 to n− 1, but it
was left unrestricted in the type that we saw earlier. Both these limitations are due
to λamor−’s lack of ability to specify these constraints at the level of types. These
limitations, however, can be avoided by refining the exponential type (!τ) a bit. In
particular, we add dependent sub-exponentials, denoted by !a<Iτ, that can not only
specify a bound on the number of copies of the underlying term but can also specify
the constraints on the index-level substitutions that are needed in the Church encoding.
!i<nτ represents n copies of τ in which i is uniquely substituted with all values from
0 to n− 1.

Such dependent sub-exponentials have been used in the prior work. d`PCF [39]1,
for instance, uses it to obtain relative completeness of typing for PCF programs, which
means every PCF program can be type checked in d`PCF, where the cost of the PCF
program gets internalized in d`PCF’s typing derivation. This is a very powerful result.
However, cost analysis in d`PCF works only for whole programs. This is because
d`PCF does not internalize cost into the types but rather tracks it only on the typing
judgment. As a result, in order to verify the cost of e2 in the let expression, say
let x = e1 in e2, we would need the whole typing derivation of e1 as cost is encoded
on the judgment in d`PCF.

Contrast this with λamor where cost requirements are described in the types (M κ τ

for instance). In this case, the cost of e2 can be verified just by knowing the type of e1
(the whole typing derivation of e1 is not required to type check e2. Therefore e1 can
be verified separately).

1 The bounded exponential was first introduced in Bounded Linear Logic [24], but it was deliberately
restricted to polynomial bounds only. d`PCF [39] generalized the bounds, we use this generalized form
here.

41
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We show that by adding such an indexed sub-exponential to λamor− , we can
not only obtain the same relative completeness2 result that d`PCF obtains, but also
provide a compositional alternative to the d`PCF style of cost analysis. We describe
the addition of !i<nτ to λamor− in this chapter. We call the resulting system λamor.

6.1 changes to the type system : syntax and type rules

We take the same language as described earlier in Chapter 2 but replace the expo-
nential type with an indexed sub-exponential type. There are no changes to the term
syntax or semantics of the language. We just extend the index language with two
specific counting functions described below.

Index I, J,K ::= . . . |
∑
a<J I |©4

J,K
a I | . . .

Types τ ::= . . . | !a<Iτ | . . .

Non-linear context Ω ::= . | Ω, x :a<I τ

for term variables

Ω1+Ω2 ,


Ω2 Ω1 = .

(Ω ′1 +Ω2/x), x :c<I+J τ Ω1 = Ω
′
1, x :a<I τ[a/c] ∧ (x :b<J τ[I+ b/c]) ∈ Ω2

(Ω ′1 +Ω2), x :a<I τ Ω1 = Ω
′
1, x :a<I τ ∧ (x :− −) 6∈ Ω2

∑
a<I

Ω ,

 . Ω = .

(
∑
a<IΩ), x :c<∑

a<I J
σ Ω = Ω ′, x :b<J σ[(

∑
d<a J[d/a] + b)/c]

Figure 6.1: Changes to the type system syntax

We describe the changes introduced to the type and index language in Fig. 6.1.
Since the sub-exponential type helps in specifying the number of copies of a term, we
find inclusion of two specific counting functions to the index language very useful,
both of which have been inspired from prior work [39]. The first one is a function
for computing a bounded sum over indices, denoted by

∑
a<J I. It basically describes

summation of I with a ranging from 0 to J− 1 inclusive, i.e., I[0/a] + . . .+ I[J− 1/a].
The other function is used for computing the number of nodes in a graph structure

2 Use of indexed sub-exponential is just one way of obtaining relative completeness. There could be
other approaches, which we do not get into here.



6.1 changes to the type system : syntax and type rules 43

like a forest of recursion trees. This is called the forest cardinality and denoted©4J,Ka I.
The forest cardinality©4J,Ka I counts the number of nodes in the forest (described by I)
consisting of K trees starting from the Jth node. Nodes are assumed to be numbered
in a pre-order fashion. It can be formally defined as in Fig. 6.2 and is used to count
and identify children in the recursion tree of a fix construct.

©4I,0a K = 0

©4I,J+1a K = ©4I,Ja K+ (©4I+1+©4
I,J
a K,K[I+©4I,Ja K/a]

a K)

Figure 6.2: Formal definition of forest cardinality from [39]

The typing judgment is still the same: Ψ;Θ;∆;Ω; Γ ` e : τ. However, the definition
of Ω is now different. The non-linear context Ω now carries the constraint on the
index variable described on the “:” as in x :a<I τ (Fig. 6.1). It specifies that there are I
copies of x with type τ in which the free a is substituted with unique values in the
range from 0 to I− 1. The non-linear context also differs in the definition of splitting.
The definition of + (splitting, also referred to as the binary sum) for Ω allows for the
same variable to be present in the two contexts but by allowing splitting over the
index ranges. Binary sum of Ω1 and Ω2 in λamor− was just a disjoint union of the two
contexts. However, here in λamor, it permits Ω1 and Ω2 to have common variables
but their multiplicities should add up. We also introduce a notion of bounded sum
for the non-linear context denoted by

∑
a<IΩ. Both binary and bounded sum over

non-linear contexts are described in Fig. 6.1.
We only describe the type rules for the sub-exponential and the fixpoint in Fig. 6.3

as these are the only rules that change. T-subExpI is the rule for the introduction form
of the sub-exponential. It says that if an expression e has type τ under a non-linear
context Ω and a < I s.t. e does not use any linear resources (indicated by an empty
Γ ) then !e has type !a<Iτ under context

∑
a<IΩ. As before, we can always use the

weakening rule to add linear resources to the conclusion. T-subExpE is similar to
T-expE defined earlier but additionally it also carries the index constraint coming
from the type of e1 in the context for e2.

The fixpoint expression (fix x.e) encodes recursion by allowing e to refer to fix x.e
via x. T-fix defines the typing for such a fixpoint construct. It is a refinement of the
corresponding rule in Fig. 2.3. The refinements serve two purposes: 1) they make the
total number of recursive calls explicit (this is represented by L) and 2) they identify
each instance of the recursive call in a pre-order traversal of the recursion tree. This is
represented by the index (b+ 1+©4b+1,ab I) (representing the ath child of the bth node
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in the pre-order traversal). Using these two refinements, the T-fix rule in Fig. 6.3 can be
read as follows: if for all I copies of x in the context we can type check e with τ, then
we can also type check the top-most instance of fix x.e with type τ[0/b] (0 denotes
the starting node in the pre-order traversal of the entire recursion tree). Contrast the
rules described in Fig. 6.3 with the corresponding rules for λamor− described earlier
in Fig. 2.3.

Ψ;Θ,a;∆,a < I;Ω; . ` e : τ

Ψ;Θ;∆;
∑
a<I

Ω; . `!e :!a<Iτ
T-subExpI

Ψ;Θ;∆;Ω1; Γ1 ` e : (!a<Iτ) Ψ;Θ;∆;Ω2, x :a<I τ; Γ2 ` e ′ : τ ′

Ψ;Θ;∆;Ω1 +Ω2; Γ1 + Γ2 ` let ! x = e in e ′ : τ ′
T-subExpE

Ψ;Θ,b;∆,b < L;Ω, x :a<I τ[(b+ 1+©4b+1,a
b I)/b]; . ` e : τ L >©40,1

b I

Ψ;Θ;∆;
∑
b<L

Ω; . ` fix x.e : τ[0/b]
T-fix

Figure 6.3: Changes to the type rules

We also introduce a new subtyping rule, sub-bSum. sub-bSum helps move the
potential from the outside to the inside of a sub-exponential. This is sound because
1) potentials are really ghosts at the term level. Therefore terms of type [

∑
a<I K] !a<Iτ

and !a<I [K] τ are both just exponentials and 2) there is only a change in the position
but no change of potential in going from [

∑
a<I K] !a<Iτ to !a<I [K] τ. We have proved

that this new subtyping rule is sound wrt the model of λamor types by proving that if
τ is a subtype of τ ′ according to the syntactic subtyping rules then the interpretation
of τ is a subset of the interpretation of τ ′. This is formalized in Lemma 10. σ and ι
represent the substitutions for the type and index variables respectively.

Ψ;Θ;∆ ` [
∑
a<I

K] !a<Iτ <: !a<I [K] τ
sub-bSum

It is noteworthy that sub-bSum is the only rule in λamor which specifies how the
two modalities, namely, the sub-exponential (!a<Iτ) and potential capturing modal
type ([p] τ) interact with each other. People familiar with monads and comonads
might wonder, why such an interaction between the sub-exponential and the monad
is not required? We believe this is because we can always internalize the cost on the
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type using the store construct, so just relating exponential and potential modal type
suffices. However, studying such interactions could be an interesting direction for
future work.

Lemma 10 (Value subtyping lemma). ∀Ψ,Θ,∆, τ ∈ Type, τ ′,σ, ι.
Ψ;Θ;∆ ` τ <: τ ′ ∧ . |= ∆ι =⇒ Jτ σιK ⊆ Jτ ′ σιK

6.2 semantic model of types

We only describe the value relation for the sub-exponential here as the remaining
cases of the value relation are exactly the same as before. (p, T , !e) is in the value
interpretation at type !a<Iτ iff the potential p suffices for all I copies of e at the
instantiated types τ[i/a] for 0 6 i < I. The other change to the model is in the
interpretation of Ω. This time we have (p, δ) instead of (0, δ) in the interpretation of
Ω s.t. p is sufficient for all copies of all variables in the context. The changes to the
model are described in Fig. 6.4.

J!a<IτK , {(p, T , !e) | ∃p0, . . . ,pI−1.p0 + . . .+ pI−1 6 p ∧ ∀0 6 i < I.(pi, T , e) ∈ Jτ[i/a]KE}

JΩKE = {(p, T , δ) | ∃f : Vars→ Indices→ Pots.

(∀(x :a<I τ) ∈ Ω.∀0 6 i < I. (f x i, T , δ(x)) ∈ Jτ[i/a]KE) ∧

(
∑
x:a<Iτ∈Ω

∑
06i<I f x i) 6 p}

Figure 6.4: Changes to the model

We prove the soundness of the model by proving a slightly different fundamen-
tal theorem (Theorem 11). There is an additional potential (pm) coming from the
interpretation of Ω (which was 0 earlier).

Theorem 11 (Fundamental theorem of λamor). ∀Ψ,Θ,∆,Ω, Γ , e, T , τ ∈ Type,pl,pm,γ, δ,σ, ι.
Ψ;Θ;∆;Ω; Γ ` e : τ ∧
(pl, T ,γ) ∈ JΓ σιKE ∧ (pm, T , δ) ∈ JΩ σιKE ∧ . |= ∆ ι =⇒
(pl + pm, T , e γδ) ∈ Jτ σιKE.

The proof of the theorem proceeds in a manner similar to that of Theorem 3, i.e., by
induction on the typing derivation. Now, in the fix case, we additionally induct on the
recursion tree (this also involves generalizing the induction hypothesis to account for
the potential of the children of a node in the recursion tree). The technical report [52]
has the entire proof.





7
E M B E D D I N G d `P C F

In this chapter we show that λamor (full), as described in the previous chapter, is
relatively complete for PCF programs. We prove this by showing a type, semantics
and cost preserving embedding of d`PCF into λamor.

7.1 brief primer on d`PCF

d`PCF [39] is a call-by-name calculus with an affine type system for doing cost
analysis of PCF programs. Terms and types of d`PCF are described in Fig. 7.1. d`PCF
works with the standard PCF terms but refines the standard types of PCF a bit
to perform cost analysis. The type of natural numbers is refined with two indices
Nat[I, J] to capture types for natural numbers in the range [I, J] specified by the
indices. Function types are refined with index constraints in the negative position.
For instance, [a < I]τ1(τ2 is the type of a function which when given I copies of an
expression (since d`PCF is call-by-name) of type τ1 will produce a value of type τ2.
The [a < I] acts both as a constraint on what values a can take and also as a binder
for free occurrence of a in τ1 (but not in τ2). [a < I]τ1(τ2 is morally equivalent to
(τ1[0/a] ⊗ . . . ⊗ τ1[I− 1/a])(τ2.

d`PCF terms t ::= n | s(t) | p(t) | ifz t then u else v | λx.t | tu | fix x.t

d`PCF types σ ::= Nat[I, J] | A( σ

A ::= [a < I]σ

Figure 7.1: d`PCF’s syntax of terms and types from [39]

The typing judgment of d`PCF is given by Θ;∆; Γ `ξC ed : τ. Θ denotes a context
of index variables, ∆ denotes a context for index constraints, Γ denotes a context of
term variables and C denotes the cost of evaluation of ed. This cost C is the number

47
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of variable lookups in a full execution of ed. ξ on the turnstile denotes an equational
program used for interpreting the function symbols of the index language. Like in
the negative position of the function type, multiplicities also show up with the types
of the variables in the typing context. The typing rules are designed to track these
multiplicities (which is a coeffect in the system). For illustration, we only show the
typing rule for function application in Fig. 7.2. Notice how the cost in the conclusion
is lower bounded by the sum of: a) the number of times the argument of e1 can be
used by the body, i.e., I, b) the cost of e1, i.e., J and c) the cost of I copies of e2, i.e.,∑
a<I K. The authors of [39] show that this kind of coeffect tracking in the type system

actually suffices to give an upper-bound on the cost of execution on a KPCF machine,
a Krivine-style machine [38] for PCF.

Θ;∆; Γ `J e1 : ([a < I].τ1)( τ2

Θ,a;∆,a < I;∆ `K e2 : τ1 Γ ′ w Γ ⊕
∑
a<I

∆ H > I+ J+
∑
a<I

K

Θ;∆; Γ ′ `H e1 e2 : τ2
app

Figure 7.2: Typing rule for function application from [39]

States of the KPCF machine consist of triples of the form (t, ρ, θ) where t is a d`PCF
term, ρ is an environment for variable binding and θ is stack of closures. A closure
(denoted by C) is simply a pair consisting of a term and an environment. The left
side of Fig. 7.3 describes some evaluation rules of the KPCF machine from [39]. For
instance, the application triple (e1e2, ρ, θ) reduces in one step to e1, and e2 along with
the current closure is pushed on top of the stack for later evaluation. This is how one
would expect an evaluation to happen in a call-by-name scheme. One final ingredient
that we need to describe for the soundness of d`PCF is a notion of the size of a term,
denoted by |t|. The size of a d`PCF term is defined in [39] (we describe some of the
clauses on the right side of Fig. 7.3).

(e1 e2, ρ, θ) → (e1, ρ, (e2, ρ).θ)

(λx.e, ρ, C.θ) → (e1, C.ρ, θ)

(x, (t0, ρ0) . . . (tn, ρn), θ) → (tx, ρx, θ)

(fix x.e, ρ, θ) → (e, (x, (fix x.e, C).ρ, θ)

|x| = 1

|c| = 1

|λx.e| = |e|+ 1

|e1 e2| = |e1|+ |e2|+ 1

|fix x.e| = |e|+ 1

Figure 7.3: KPCF reduction rules (left) and size function (right) from [39]

Finally d`PCF soundness (Theorem 12) states that the execution cost (denoted by n)
is upper-bounded by the product of the size of the initial term, t and (I+ 1). d`PCF
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states the soundness result for base (bounded naturals) types only and soundness for
functions is derived as a corollary. ⇓n is a shorthand for n→ (n-step closure under the
KPCF reduction relation).

Theorem 12 (d`PCF’s soundness from [39]). ∀t, I, J,K.
`I t : Nat[J,K] ∧ t ⇓n m =⇒ n 6 |t| ∗ (I+ 1)

7.2 translating d`PCF to λamor

Without loss of generality, as in RAML’s embedding, we abstract the type of naturals
and treat them as a general abstract base type b. Like RAML, d`PCF’s embedding
is also type directed. The type translation function is described in Fig. 7.4. d`PCF’s
base type is translated into the base type of λamor. The function type ([a < I]τ1(τ2)
translates to a function which takes I copies of the monadic translation of τ1 (following
Moggi [44]) and I units of potential (to account for I substitutions during application)
as a modal unit type, and returns a monadic type of translation of τ2. The monad on
the return type is essential as a function cannot consume (I units of) potential and
still return a pure value. The translation of the typing context is defined pointwise for
every variable in the context. Since all variables in the d`PCF’s typing context have
comonadic types (carrying multiplicities), d`PCF’s typing context is translated into
the non-linear typing context of λamor.

LbM = b

L[a < I]τ1(τ2M = !a<IM 0Lτ1M( [I] 1(M 0 Lτ2M

L.M = .

LΓ , x : [a < I]τM = LΓM, x :a<I M 0 LτM

Figure 7.4: Type and context translation for d`PCF

The translation judgment is of the form Θ;∆; Γ `I ed : τ  ea where ea
denotes the translated λamor term. ξ never changes in any of d`PCF’s typing rules,
so for simplification we assume it to be present globally and thus we omit it from
the translation judgment. The expression translation of d`PCF terms is defined by
induction on typing judgments (Fig. 7.5). Notice that in the variable rule (var) we
place a deliberate tick construct which consumes one unit of potential. This is done
to match the cost model of d`PCF. Without this accounting our semantics and cost
preservation theorem would not hold. The translation of function application and
the fixpoint construct make use of a coercion function (coerce, which is written in
λamor itself). It helps convert an application of exponentials into an exponential of
application. The coercion function is described in the box along with the expression
translation rules in Fig. 7.5.
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Θ;∆ |= J > 0 Θ;∆ |= I > 1 Θ;∆ ` σ[0/a] <: τ Θ;∆ |= [a < I]σ ⇓ Θ;∆ |= Γ ⇓

Θ;∆; Γ , x : [a < I]τ `J x : τ[0/a] λp.release− = p in bind− = ↑1 in x
var

Θ;∆; Γ , x : [a < I]τ1 `J e : τ2  et

Θ;∆; Γ `J λx.e : ([a < I].τ1)( τ2  

λp1. ret λy.λp2. let ! x = y in release− = p1 in release− = p2 in binda = store() in et a

lam

Θ;∆; Γ `J e1 : ([a < I].τ1)( τ2  et1

Θ,a;∆,a < I;∆ `K e2 : τ1  et2 Γ ′ w Γ ⊕
∑
a<I

∆ H > J+ I+
∑
a<I

K

Θ;∆; Γ ′ `H e1 e2 : τ2  E0
app

E0 = λp.release− = p in binda = store() in E1
E1 = bindb = et1 a in bind c = store!() in bindd = store() in b (coerce !et2 c) d

Θ,b;∆,b < L; Γ , x : [a < I]σ `K e : τ et

τ[0/a] <: µ Θ,a,b;∆,a < I,b < L; Γ ` τ[(b+ 1+©4b+1,a
b I)/b] <: σ

Γ ′ v
∑
b<L

Γ L,M >©40,1
b I N >M− 1+

∑
b<L

K

Θ;∆; Γ ′ `N fix x.e : µ E0
fix

E0 = fix Y.λp.release− = p in E1
E1 = release− = p in E2
E2 = bindA = store() in let ! x = (E2.1 E2.2) in bindC = store() in et C
E2.1 = coerce !Y
E2.2 = (λu.!()) A

coerce : !a<I(τ1( τ2)(!a<Iτ1(!a<Iτ2

coerce F X , let ! f = F in let ! x = X in!(f x)

Figure 7.5: Expression translation: d`PCF to λamor
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The translated terms have the type [I+ count(Γ)] 1(M 0 LτM where count is defined
as count(Γ , x : [a < I]τ) = count(Γ)+ I (with count(.) = 0 as the base case). Since d`PCF
counts cost for each variable lookup in a terminating KPCF reduction, the translated
term must have enough potential to make sure that all copies of free variables in the
context can be used. This is ensured by having (I+ count(Γ)) potential as input (in
the argument position of the translated type): I accounts for the substitutions coming
from function applications in the d`PCF expression and count(Γ) accounts for the
total number of possible substitutions of context variables. All translated expressions
release the input potential coming from the argument. This is later consumed using a
tick as in the variable rule or stored with a unit value to be used up by the induction
hypothesis. We show that the translated terms are well-typed in λamor (Theorem 13).

Theorem 13 (Type preservation: d`PCF to λamor). If Θ;∆; Γ `I e : τ in d`PCF then
there exists e ′ such that Θ;∆; Γ `I e : τ  e ′ such that there is a derivation of
.;Θ;∆; LΓM; . ` e ′ : [I+ count(Γ)] 1(M 0 LτM in λamor.

We want to highlight another point about this translation. This is the second
instance (the first one was embedding of Church numerals, Section 4.3) where em-
bedding using just a cost monad (without potentials) does not seem to work. To
understand this, let us try to translate d`PCF’s function type ([a < I]τ1(τ2) us-
ing only the cost monad and without the potentials. One possible translation of
[a < I]τ1(τ2 is (!a<ILτ1M)(M I Lτ2M. The I in the monadic type is used to account
for the cost of substitution of the I copies of the argument in d`PCF. Now, in the
rule for function abstraction we have to generate a translated term of the type

M(J+ count(Γ)) (!a<ILτ1M(M I Lτ2M). From the induction hypothesis, we have a term
of type M(I+ J+ count(Γ)) Lτ2M. A possible term translation can be ret λy. let ! x = y in
et. This would require us to type et with M I Lτ2M under the given context with a
free x. However et can only be typed with M(I+ J+ count(Γ)) Lτ2M (which cannot be
coerced to the desired type). Hence, the translation with just cost monads does not
work. We believe that such a translation can be made to work by adding appropriate
coercion axioms for the cost monads.

However, there is an alternate way to make this translation work, using the
modal type and that is what we use. The idea is to capture the I units as a po-
tential using the modal type of λamor (in the negative position) instead of cap-
turing it (in the positive position) as a cost on the monad. Concretely, this means
that, instead of translating [a < I]τ1(τ2 to (!a<ILτ1M)(M I Lτ2M, we translate it to
(!a<I M 0 Lτ1M)( [I] 1(M 0 Lτ2M (as described in Fig. 7.4 earlier). Likewise, the typing
judgment is also translated using the same potential approach (as described in Theo-
rem 13). Following this approach, we obtain a term of type [(J+ I+ count(Γ))] 1(M 0 Lτ2M
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from the induction hypothesis and we are required to produce a term of type
[J+ count(Γ)] 1 ( M 0((!a<I M 0 Lτ1M)( [I] 1(M 0 Lτ2M) in the conclusion. By us-
ing the ghost constructs (namely store and release) to rearrange the given potential of
J+ count(Γ) and I units into a potential of (J+ I+ count(Γ)) units, it is clear that we
can obtain a term of the desired type from the induction hypothesis. The exact term
is described in the lam rule of Fig. 7.5.

The semantic correctness of our translation is proved by defining a cross-language
relation between d`PCF and λamor terms (Fig. 7.6). As before, separate value and
expression interpretations are given for source (in this case d`PCF) types. The value
relation for the function type makes use of an auxiliary relation, b[a < I]τcNE. The key
idea behind b[a < I]τcNE is the following two part observation: 1) any d`PCF function
(of type [a < I]τ1 ( τ2) and the translation both expect I copies for the argument
and 2) translation of every well-typed d`PCF expression is wrapped inside a function
which expects a unit. As a consequence of 1) and 2), a source (d`PCF) argument
expression must be related to I copies of a related target (λamor) expression when
applied to a unit. Specializing the relation with the coercion function is necessary
because of call-by-name semantics, in a call-by-value scheme we could have just used
∃e ′t.et =!(e ′t ()).

bbcV , {(sv, tv) | sv ∈ JbK∧ tv ∈ JbK∧ sv = tv}

b[a < I]τ1( τ2cV , {(λx.es, λx.λp. let ! x = y in et) | ∀e ′s, e ′t.

(e ′s, e ′t) ∈ b[a < I]τ1cNE =⇒ (es[e
′
s/x], et[e ′t/y][()/p]) ∈ bτ2cE}

bτcE , {(es, et) | ∀sv.es ⇓ sv =⇒ ∃tvt, tvf, J.et ⇓ tvt ⇓J tvf ∧ (sv, tvf) ∈ bτcV }

b[a < I]τcNE , {(es, et) | ∃e ′t.et = coerce !e ′t !() ∧ ∀0 6 i < I.(es, e ′t()) ∈ bτ[i/a]cE}

bΓcE , {(δs, δt) |

(∀x : [a < J]τ ∈ dom(Γ).∀0 6 j < J.(δs(x), δt(x)) ∈ bτ[j/a]cE)

Figure 7.6: Cross-language model d`PCF to λamor

We prove the correctness of this relation (Theorem 14) by proving that every well-
typed source term es of type τ is related to the unit application of the translation at
the source type.

Theorem 14 (Fundamental theorem). ∀Θ,∆, Γ , τ, es, et, I, δs, δt.
Θ;∆; Γ `I es : τ et ∧ (δs, δt) ∈ bΓ ιcE ∧ . |= ∆ ι =⇒ (esδs, et () δt) ∈ bτ ιcE

To show that the meaning of the cost annotation is not lost during this translation,
we want to re-derive d`PCF’s soundness in λamor using the properties of the transla-
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tion only. But d`PCF’s soundness is defined wrt reduction on a KPCF machine [38],
as described earlier. So, we would like to rederive a proof of Theorem 15. This is a
generalized version of d`PCF’s soundness (Theorem 12), where we prove the cost
bound for terms of arbitrary types.

Theorem 15 (Generalized d`PCF’s soundness). ∀t, I, τ, ρ.
`I (t, ε, ε) : τ ∧ (t, ε, ε) n→ (v, ρ, ε) =⇒ n 6 |t| ∗ (I+ 1)

To prove this, we need to find a way to relate KPCF triples to λamor terms. For that,
we come up with an approach for decompiling KPCF triples into d`PCF terms (which
we can then transitively relate to λamor terms via our translation). We describe this
decompilation next.

7.3 decompiling KPCF triples to d`PCF terms

The required decompilation procedure is defined as a function (denoted by L.M) from
KPCF triples to d`PCF terms. We first define decompilation for closures (the notation
L.M is overloaded), by induction on the environment. For an empty environment, the
decompilation is simply an identity on the given term. For an environment of the
form C1, . . . , Cn, the decompilation is given by closing off the open parts of the given
term. Direct substitution of closures in e would not work, as this will take away all
the free variables in e. As a result, the decompiled term would not have any cost due
to variable lookups, something which d`PCF’s type system explicitly tracks. So, the
decompilation would not remain cost-preserving. So, instead, we decompile it using
lambda abstraction and application as described on the left side of Fig. 7.7. Using this
closure decompilation, we define decompilation for the full KPCF triples. When the
stack is empty, it is just the decompilation of the underlying closure. When stack is
non-empty, the closures on the stack are applied one after the other on the closed
term obtained via the translation of the closure. This is described on the right side of
Fig. 7.7.

L(e, [])M , e

L(e, C1, . . . , Cn)M , (λx1 . . . xn.e) LC1M . . . LCnM

L(e, ρ, [])M , L(e, ρ)M

L(e, ρ, C.θ)M , LL(e, ρ)M LCM, [], θM

Figure 7.7: Decompilation of closure (left) and KPCF triple (right)

We prove that the decompilation preserves type, cost and semantics of the KPCF
triple. For type and cost preservation, we prove Theorem 16. The proof is by induction
on the typing derivation of the given KPCF triple. The typing judgment for a KPCF
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triple is given by Θ;∆ `I (e, ρ, θ) : τ where Θ and ∆ represent contexts of index
variables and constraints, respectively; and I represents the cost as in d`PCF’s typing
judgment.

Theorem 16 (Type and cost preservation for decompilation). ∀Θ,∆, e, ρ, θ, τ.
Θ;∆ `I (e, ρ, θ) : τ =⇒ Θ;∆; . `I L(e, ρ, θ)M : τ

For semantics preservation (Theorem 17) we prove that a KPCF triple and the
decompilation are logically related (Fig. 7.8). The ∼e relation relates a KPCF triple to
the translation iff reduction on the KPCF machine can be matched by reduction using
d`PCF’s abstract semantics, resulting in related values (which is basically equality
under the closing environment).

(vk, ρ, ε) ∼v vd , vd = vk ρ

(ek, ρ, θ) ∼e ed , ∀vk, ρ ′.(ek, ρ, θ) ∗→ (vk, ρ ′, ε) =⇒ ∃vd.ed
∗→ vd ∧ (vk, ρ ′, ε) ∼v vd

Figure 7.8: Relating KPCF triple with d`PCF terms

Theorem 17 (Semantics preservation for decompilation). ∀ek, ρ, θ. (ek, ρ, θ) ∼e L(ek, ρ, θ)M

7.4 re-deriving d`PCF’s soundness

We compose the decompilation of KPCF triples to d`PCF terms with the translation
of d`PCF to λamor terms to obtain a composite translation (represented by L.M) from
KPCF triples to λamor. We then prove that this translation preserves the meaning
of cost annotations wrt to the intensional soundness criteria stated in Theorem 15.
The main idea of the proof lies in proving a key invariant (captured formally in
Lemma 18

1) about every KPCF reduction step of the form Ds → Es: in going from
Ds to Es either 1) the cost of execution of the translation of the decompiled term
reduces by one and the size increases by at most |es|, the size of initial term or 2) the
cost remains the same and the size reduces. The intuition behind this result is the
following: when the evaluation step involves variable substitution, then the size of the
term will increase by the size of the substituted term (which cannot be greater than
the size of the initial term, since we start from a closed expression es) and the cost
will go down by one as d`PCF only counts variable substitutions. Or, the size of the
term will reduce while the cost will remain the same. This will happen in all steps
not involving substitution.

1 d`PCF uses a similar invariant in the “weighted subject reduction” lemma [39]
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Lemma 18 (Cost and size lemma). ∀es,Ds,Es, et, va, j, v1.
(es, ε, ε) ∗→ Ds → Es ∧

Ds is well-typed ∧ Es is well-typed ∧

et = LDsM ∧ et () ⇓ va ⇓j v1 =⇒
∃e ′t, vb, v2, j ′. e ′t = LEsM ∧ e ′t () ⇓ vb ⇓j

′
v2 ∧ ∀s. v1

s≈aE v2 ∧

1. j ′ = j− 1 ∧ |Es| < |Ds|+ |es| or

2. j ′ = j ∧ |Ds| > |Es|

The proof of this theorem works by induction on the reduction step Ds → Es

followed by a nested induction on the KPCF stack in Ds. Note that we prove a relation
(∀s.v1

s≈aV v2) between the values obtained by the full execution (pure application
followed by forcing) of the translations obtained by applying the composite translation
to Ds and Es. This relation, although not required by the top-level soundness theorem
(Theorem 15), is critical for finishing the proof of cost and size lemma inductively.
Also this relation cannot be an exact equality, as the decompilation introduces some
administrative applications, which in a call-by-name setting, do not coincide with
exact equality. For an intuition of this, consider the KPCF application (e1 e2, C, .) →
(e1, C, (e2, C)). Now, the decompilation of (e1 e2, C, .) will give (λx.e1 e2) LCM (call this
D1). Similarly, the decompilation of (e1, C, (e2, C)) will result in (λx.e1) LCM ((λx.e2) LCM)
(call this D2). D1, when executed, will have e2[LCM/x] applied to e1[LCM/x] while D2
will have ((λx.e2) LCM) applied to e1[LCM/x]. e2[LCM/x] and ((λx.e2) LCM) are similar
but unequal terms. This kind of inequality (but similarity) also shows up in the
translations of the decompiled terms, i.e., at the level of λamor. So, we develop a
similarity relation between λamor terms. The relation merely captures administrative
bureaucracy related to our decompilation. There is nothing surprising and nothing
related to costs or potentials. We defer the details of this relation to the technical
report [52].

Finally, we re-derive d`PCF’s soundness (Theorem 15) by applying Lemma 18 for
every step of the reduction starting from (t, ε, ε).





8
R E L AT E D W O R K F O R λA M O R

Cost analysis of lazy programs. [20] is a type system for amortized analysis of lazy
functional data structures following Okasaki [49]. The type system uses only a
type-level monad to represent cost but has no concrete type-level representation
for potentials. Amortization is introduced via a term-level construct which is used
pay for the cost partially or in full. Amortization in λamor on the other hand is
type-theoretic. Our novel type constructor ([p] τ) gives a type-theoretic representation
to potentials and builds an affine type theory around it. We demonstrate that doing
so yields an extremely expressive and very general approach for doing amortized
resource analysis. Also, [20] works in a call-by-need setting where linearity/affineness
is not required for soundness, thereby leaving the question of integration between
amortization and affineness completely open. λamor bridges this gap by working in
a call-by-name setting (which would be unsound without affineness) and showing
that amortization and affineness can indeed work together in a fully general way.

[41] provides a tool based approach for verification of resource bounds for Scala
programs with laziness and memoization. Bounds are specified as templates contain-
ing holes in them. The tool tries to infer these holes using inductive assume-guarantee
reasoning. They experimentally evaluate the efficacy of their inference. This is clearly
very different from λamor: While their focus is on building a tool for resource verifi-
cation of lazy programs in Scala, we are after a general type theory for verification of
amortized bounds.

[37] works with a call-by-push-value language to develop a framework for automat-
ically extracting recurrences which represent the running time of a program in terms
of the size of the input. The approach does not handle amortization and hence is very
different from λamor.

Type and effect systems. Several type and effect system have been proposed for doing
amortized analysis using the method of potentials. Approaches like [30, 34] can only
handle linear resource bounds. Univariate RAML [29] generalizes linear potentials
to univariate polynomial potentials. Multivariate RAML [27] further generalizes the

57
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potential to multivariate polynomials. AARA approaches like [28, 33] extend RAML
with limited support for closures and higher-order functions. For instance, [33] can
handle closures where potential is provided with only the last argument. [28] cannot
handle Curry-style functions at all. The main limitation of all these approaches is
limited or no support for higher-order functions and closures. λamor gets rid of this
limitation. λamor can handle closures in their full generality with no restriction on
which argument(s) have potential. [35] extends the RAML-style of amortized analysis
to lazy functional programs. It does not provide a general type-theoretic construct
for representing potentials, which λamor does. Also, the authors acknowledge that
their approach only works for monomorphic types. λamor, on the other hand, scales
effortlessly to polymorphic types as well.

The unary fragment of Relcost [16] is another type-and-effect system which es-
tablishes lower and upper bounds on the cost of execution. However, it is not an
amortized analysis framework and works with only cost but not potentials.

Sized types. The key idea of [9] is to transform the source program into a program
with explicit cost passing. Cost is denoted using unary counters. After this transfor-
mation, a type system for size analysis is used to actually obtain time complexity
guarantees. [19] uses a notion of virtual clock in the type system, which winds down
as the program executes (they only count function application as a winding step).
Clock counters are associated with the argument and the result types of a function;
polymorphism is allowed on such counters for expressivity. To make the bounds
precise they use dependent types and build a type system for a language like Fω. Use
of sized-types is common to [9, 19] and λamor (we use sized types for list). But sized
types in λamor are only required for expressiveness and not for resource analysis
per-se. Also, resource analysis in λamor is performed using the potential capturing
modal type and the cost monad, both of which are missing from [9, 19]. Finally [9, 19]
do not have a semantic model for types and only have syntactic proofs of soundness.
λamor, on the other hand, provides both a semantic interpretation of types and a
semantic proof of soundness.

Resource analysis using program logics. [14] describes an amortized analysis for first-
order imperative programs using quantitative Hoare-logic. Essentially, the idea is to
track propositions about the potential before and after the program execution as pre-
and post-conditions. This helps obtain compositional analysis of resource bounds.
The tracking of quantitative bounds in pre- and post-conditions is in principle similar
to how bounds are tracked on the typing judgment in RAML. The approach is still
limited to first-order programs, while λamor scales to full higher-order programs.

[15] uses a separation logic based framework extended with time-credits to verify
the amortized complexity of the union-find algorithm. Similarly, [46] uses a notion of



related work for λamor
59

time credits and time receipts in the Iris program logic [36] for verification of upper
and lower bounds of programs, respectively. Time credits are like potentials and are
used to pay for the cost of execution. As a result, they are assumed as preconditions.
Time receipts are a dual concept. They specify how many units of resources were
consumed by an execution. As a result, they are specified in the postcondition. Cost
analysis in these frameworks is only effect based. λamor on the other hand can work
for both effect and coeffect based cost analysis. Also we show that cost analysis in
λamor is relatively complete for PCF. Such a completeness result is not shown in any
of the frameworks mentioned in this paragraph.

As a general note, although λamor has a type-theoretic take on amortization, the
approach used in λamor is not fundamentally limited to type-based analysis only. We
believe it should be possible to port these ideas into a program logic framework with
all the desirable properties like completeness.

Coeffect based cost analysis. d`PCF [39] and d`PCFv [40] describe affine type sys-
tems for cost analysis of PCF programs in a call-by-name and call-by-value setting
respectively. The key idea in both these papers is to use light-weight linear depen-
dencies with dependent sub-exponentials to both count the number of occurrences of
variables and also to express index dependencies in types. They represent the cost
of execution of a term by the number of variable substitutions plus the number of
substitution-free execution steps on a specific execution model based on the Krivine
machine [38] in the case of d`PCF and based on the CEK machine [21] in the case
of d`PCFv. Although proved relatively complete wrt an oracle that can solve simple
linear inequalities on index variables, both frameworks suffer from the limitation
that the cost is expressed only in the typing derivation (but not in the type) making
both frameworks non-compositional. λamor overcomes this limitation by providing a
compositional way of doing cost analysis while still retaining relative completeness.

[6] presents Quantitative Type Theory (QTT), which is a dependent type theory
with coeffects. QTT and λamor are very different in their goals. QTT is focused on
studying the interaction between dependent types and coeffects, on the other hand,
λamor studies coeffects from the perspective of cost analysis. Technically, QTT only
considers non-dependent coeffects, as in x :n τ. In contrast, λamor studies coeffects
with uniform linear dependencies coming from the dependent sub-exponential of
d`PCF [39], as in x :a<n τ.





Part II

Type theory for information flow
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9
A P P L I C AT I O N T O I N F O R M AT I O N F L O W C O N T R O L

We now show that ideas developed in λamor are quite general and can be applied to
other domains. In particular, we show how to adapt these ideas for Information flow
Control (IFC) by developing a very similar type theory for coarse-grained IFC (we
explain shortly what we mean by “coarse-grained”).

9.1 information flow control and granularity of tracking

Information Flow Control (IFC) is a technique for tracking flows of information
between different elements of a computer system. This is often used to prevent illicit
flows wrt a security policy under consideration. In a language-based setting, IFC can
be performed dynamically using runtime monitoring [7, 8] or statically using type
systems [1, 11–13, 26, 43, 45, 50, 56], for instance. Here we focus only on the latter, i.e.,
on type-based approaches to IFC.

IFC type systems use confidentiality labels1 as an abstraction for tracking and
prohibiting undesired flows of information. In practice, these labels are used to
indicate the level of secrecy associated with the underlying data. For instance, a label
“high” could be used to indicate that the underlying data is secret while a label “low”
could be used to indicate that the underlying data is public. Such labels are often
drawn from a security lattice which is used to indicate a relative ordering amongst
them. For instance, we can indicate that “low” labeled data is less confidential than
“high” labeled data using a two element lattice, “low” v “high”. Meet and join
operations of such a lattice can then be used to combine labels. Join is of particular
importance (as will become clear soon). Typing rules are then set up to combine
and constrain these labels such that no secret information flows into public labels,
either directly (by assignments, for instance) or indirectly (by branching over secret

1 We use the terms confidentiality label and security label synonymously.
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data, for instance). This is often stated using a well-known relational criteria called
non-interference.

There are two significant aspects of confidentiality labels that govern how many
secure programs a type system can accept2 (often referred to as the expressiveness of
the type system). The first aspect, is the granularity at which labels are specified. For
instance, a type system with fine-grained labels might be able to specify the precise
variables or inputs on which a value depends. A coarse-grained type system might
abstract those labels to specific points of a lattice like “low” and “high” (as explained
above). The effect of varying such a granularity of labels on the expressiveness has
been studied in prior work [31].

The second aspect, which is important here, is the granularity of labeling (which
is different from the granularity of the label itself). It pertains to the extent to which
labeling is used on the types. Under this classification, a fine-grained type system
is one which labels every program value individually, denoted by label on the type.
For instance, FlowCaml [50] is a fine-grained IFC type system for ML. Every type-
constructor in FlowCaml is annotated with a confidentiality label. For example,
(AH × BL)L is a type of low (public) pairs in FlowCaml whose first component is
high (secret) and second component is low (public). H and L are standard labels used
to denote high and low data respectively. Additionally, for correctness, a label of a
value must represent an upper-bound on the labels of all the values that have flown
into it. For instance, adding a low value to a high value must produce a high value.
Therefore, a fine-grained type system must track such flows through all the operations
in the language. These principles are embodied in several other type systems besides
FlowCaml, some instances of those can be found in [12, 26, 45, 56].

Coarse-grained type systems, on the other hand, are very different. They do not
assign labels to every individual value. Instead label(s) are associated with entire
sub-computations. Values in the scope inherit the label of the sub-computation. This
approach is used by type systems like [1, 11, 13, 43].

9.2 brief synopsis : type theory for coarse-grained ifc

In this part of the thesis, we use ideas from λamor to develop a new type theory
(which we refer to as λcg) for coarse-grained IFC with higher-order state. λcg uses
the modal and the monadic type like λamor, but it uses them to track confidentiality
labels (which is the ghost state in the IFC setting) instead of potential and cost.

2 No IFC type system can be both sound and complete, i.e., accept exactly all secure programs as
confidentiality (often specified using non-interference) is undecidable.
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Unlike potential, a confidentiality label is not a non-duplicable resource and, hence,
affineness has no role in λcg. This simplifies the type theory to some extent. But, there
is an additional source of complexity in λcg, the relational nature of confidentiality
labels. A confidentiality label is a relational ghost state that relates terms in two
different executions (this is required to represent non-interference). Despite these
glaring differences we show that λcg makes use of ghost constructs which have very
similar typing to what was used in λamor. Besides demonstrating the generality
of the type theoretic constructs, we also show that λcg is extremely expressive by
showing an embedding of λfg (a variant of FlowCaml) in λcg. In fact, we also resolve
a long standing confusion about the relative expressiveness of the two granularities of
IFC, by showing that there is an embedding in the other direction i.e. from λcg to λfg

as well. Thus, we give a constructive proof of the equi-expressiveness of λfg and λcg.
As an independent contribution, we show how to set up semantic, logical relations

models of IFC types in both the fine-grained and the coarse-grained settings, over
calculi with higher-order state. While models of IFC types have been considered
before [1, 26, 42, 54], we do not know of any development that covers higher-order state.
Our models are based on step-indexed Kripke logical relations [4]. Also, our models
are relational. This is essential since we are interested in proving non-interference [25],
the standard confidentiality property which says that public outputs of a program are
not influenced by private inputs (i.e., there are no bad flows). This property is naturally
defined using two runs. Using our models, we derive proofs of the soundness of both
the fine-grained and the coarse-grained type systems.

We also use our logical relations to show that our translations are meaningful.
Specifically, we set up cross-language logical relations to prove that our translations
preserve program semantics, and from this, we derive a crucial result for each transla-
tion: Using the non-interference theorem of the target language as a lemma, we are
able to re-prove the non-interference theorem for the source language directly. These
results imply that our translations preserve label annotations meaningfully [10]. Like
all logical relations models, we expect that our models can be used for other purposes
as well.

To summarize, the contributions of this part of the thesis are:

• We describe how to use ideas from λamor to build a new type-theory (λcg) for
a completely different domain, namely, IFC.

• We present typability- and meaning-preserving translations between a fine-
grained and a coarse-grained IFC type system, showing that these type systems
are equally expressive.
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• And finally we present logical relations models of both type systems, covering
both higher-order functions and higher-order state.
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λc g : T Y P E T H E O RY F O R C O A R S E - G R A I N E D I F C

We develop λcg, calculus similar to λamor, but additionally we also add higher-
order state. The ghost operations namely, store and release which were only used to
manipulate potential in λamor are of no use in λcg. So, we replace them with similar
ghost operations (namely toLabeled and unlabel) which manipulate security labels.
λcg operates on a higher-order, eager, call-by-value language with state, but it

separates pure expressions from impure (stateful) ones at the level of types like
λamor. This is done by introducing a monad for state, and limiting all state-accessing
operations (dereferencing, allocation, assignment) to the monad. We drop refinements,
quantification and constraints as these are not needed in λcg. Values and types are
not necessarily labeled individually in λcg. Instead, there is a confidentiality label on
an entire monadic computation. This makes λcg coarse-grained. The type system of
λcg is a variant of the static fragment of the hybrid IFC type system HLIO [13].1

10.1 type system

λcg’s syntax and type system are shown in Fig. 10.1. The types include all the usual
types of the simply typed λ-calculus. There are two special types: the monadic type
denoted by C `1 `2 τ

2 and the modal type denoted by [`] τ. We assume that all labels
are drawn from a given security lattice, denoted as L.

The type C `1 `2 τ is the aforementioned monadic type of computations that
may access the heap (expressions of other types cannot access the heap), eventually
producing a value of type τ. The first label, `1, called the pc-label, is a lower bound
on the write effects of the computation. It plays the role of the “program-counter
label”, often used in IFC type systems to prevent information leaks via effects [56].
The second label, `2, called the taint label, is an upper bound on the labels of all values

1 Differences between λcg and HLIO and their consequences are discussed in Chapter 14.
2 λcg’s monadic type is doubly graded. This is because unlike λamor which only handles one effect

(which is cost) via the monad, λcg’s monad handle two effects (which are reading and writing of state).
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Expressions e ::= x | fix f(x).e | e e | (e, e) | fst(e) | snd(e) | inl(e) | inr(e) |

case e, x.e,y.e | new e | !e | e := e | () | Lb(e) | unlabel(e) |

toLabeled(e) | ret(e) | bind(e, x.e)

Types τ ::= b | 1 | τ→ τ | τ× τ | τ+ τ | ref ` τ | [`] τ | C `1 `2 τ

Typing judgment: Γ ` e : τ

(Typing rules for b, τ→ τ, τ× τ, τ+ τ, and 1 are standard and included in λcg)

Γ ` e1 : C `1 `2 τ

Γ , x : τ ` e2 : C `3 `4 τ
′ ` v `1 ` v `3 `2 v `3 `2 v `4

Γ ` bind(e1, x.e2) : C ` `4 τ
′ CG-bind

Γ ` e : τ

Γ ` ret(e) : C > ⊥ τ
CG-ret

Γ ` e : τ ′ L ` τ ′ <: τ

Γ ` e : τ
CG-sub

Γ ` e : [`] τ

Γ ` unlabel(e) : C > ` τ
CG-unlabel

Γ ` e : [`] τ

Γ ` new e : C ` ⊥ (ref ` τ)
CG-ref

Γ ` e : ref ` ′ τ

Γ ` !e : C > ⊥ (
′
[`] τ)

CG-deref
Γ ` e1 : ref ` τ Γ ` e2 : [`] τ

Γ ` e1 := e2 : C ` ⊥ 1
CG-assign

Γ ` e : C ` ` ′ τ

Γ ` toLabeled(e) : C ` ⊥ ([` ′] τ)
CG-toLabeled

Subtyping judgment: L ` τ <: τ ′

L ` τ <: τ ′ L ` ` v ` ′

L ` [`] τ <: [` ′] τ ′
CGsub-labeled

L ` τ <: τ ′ L ` ` ′1 v `1 L ` `2 v ` ′2
L ` C `1 `2 τ <: C ` ′1 `

′
2 τ
′ CGsub-monad

Figure 10.1: λcg: language syntax and type system (selected rules)
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that the computation has analyzed so far. It is, for this reason, also an implicit label
on the output type τ of the computation, and on any intermediate values within the
computation.

The type [`] τ explicitly labels a value (of type τ) with label `. The means labeling can
be used selectively in λcg. Also, the reference type ref ` τ carries an explicit label ` in
λcg. Such a reference stores a value of type [`] τ. Labels on references are necessary to
prevent implicit leaks via control dependencies—the type system relates the pc-label
to the label of the written value at every assignment.

Typing rules. λcg uses the typing judgment Γ ` e : τ. λcg uses the typing rules of the
simply typed λ-calculus for the type constructs b, 1, ×, + and→. We do not re-iterate
these standard rules, and focus here only on the new constructs (Fig. 10.1). The
construct ret(e) is the monadic return that immediately returns e, without any heap
access. Consequently, it can be given the type C > ⊥ τ (rule CG-ret). The pc-label is >
since the computation has no writes, while the taint label is ⊥ since the computation
has not analyzed any value.

The monadic construct bind(e1, x.e2) sequences the computation e2 after e1, binding
the return value of e1 to x in e2. The typing rule for this construct, CG-bind, is
important and interesting. The rule says that bind(e1, x.e2) can be given the type
C ` `4 τ

′ if (e1 : C `1 `2 τ), (e2 : C `3 `4 τ
′) and four conditions hold. The conditions

` v `1 and ` v `3 check that the pc-label of bind(e1, x.e2), which is `, is below the
pc-label of e1 and e2, which are `1 and `3, respectively. This ensures that the write
effects of bind(e1, x.e2) are indeed above the pc-label, `. The conditions `2 v `3 and
`2 v `4 prevent leaking the output of e1 via the write effects and the output of e2,
respectively. Observe how these conditions together track labels at the level of entire
subcomputations, i.e., coarsely.

Next we describe the typing rules for the ghost constructs of λcg, namely, toLabeled
and unlabel. toLabeled is an adaptation of the store construct of λamor. This construct
transforms e of monadic type C ` ` ′ τ to the type C ` ⊥ ([` ′] τ), as in the rule
CG-toLabeled. This is perfectly safe since the only way to observe the output of a
monad is by binding the result, and, that result is explicitly labeled in the final type.
The purpose of using this construct is to reduce the taint label of a computation
to ⊥. This allows a subsequent computation, which will not analyze the output of
the current computation, to not have a raised taint label of ` ′. Hence, this construct
limits the scope of the taint label to a single computation, and prevents overtainting
subsequent computations. We make extensive use of this construct in our translation
from λfg to λcg later. We note that HLIO’s original typing rule for toLabeled is different,
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and does not always allow reducing the taint to ⊥. We discuss the consequences of
this difference in Chapter 14.

Similarly, unlabel is an adaptation of the release construct of λamor. This construct
captures the effect of unlabeling a value of the labeled ([`] τ) type, as captured in
the rule CG-unlabel. If e : [`] τ, then the construct unlabel(e) eliminates this label.
This construct has the monadic type C > ` τ. The taint label ` indicates that the
computation has (internally) analyzed something labeled ` (the pc-label is > since
nothing has been written).

Rule CG-deref says that dereferencing (reading) a location of type ref ` ′ τ produces
a computation of type C > ⊥ ([` ′] τ). The type is monadic because dereferencing
accesses the heap. The value the computation returns is explicitly labeled at ` ′. The
pc-label is > since the computation does not write, while the taint label is ⊥ since
the computation does not analyze the value it reads from the reference. (The taint
label will change to ` ′ if the read value is subsequently unlabeled.) Dually, the rule
CG-assign allows assigning a value labeled ` to a reference labeled `. The result is a
computation of type C ` ⊥ 1. The pc-label ` indicates a write effect at level `.

We briefly comment on subtyping for specific constructs in λcg. Subtyping of [`] τ
is co-variant in `, since it is always safe to increase a confidentiality label. Subtyping
of C `1 `2 τ is contra-variant in the pc-label `1 and co-variant in the taint label `2 since
the former is a lower bound while the latter is an upper bound.

We prove soundness for λcg by showing that every well-typed expression satisfies
non-interference. Due to the presence of monadic types, the soundness theorem
takes a specific form (shown below), and refers to a forcing semantics (described in
Fig. 10.2). The forcing relation is defined using the judgment (H, e) ⇓fi (H ′, v), which
says that starting from a heap H, an expression e of monadic type gets forced to a
final heap H ′ and a value v in i steps (the steps are needed only for the model, which
we will describe soon). The forcing relation makes use of a pure evaluation relation
represented by e ⇓i v. The pure evaluation relation describes evaluation of pure
terms and treats monadic terms as suspended values. The pure evaluation relation is
standard, described in the technical report [52].

Theorem 19 (Non-interference for λcg). Suppose (1) `i 6v `, (2) x : [`i] τ ` e : C _ ` bool,
and (3) v1, v2 : [`i] τ. If both e[v1/x] and e[v2/x] terminate when forced, then they
produce the same value (of type bool).
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Forcing relation: (H, e) ⇓fi (H ′, v)

e ⇓i v

(H, ret(e)) ⇓fi+1 (H, v)
cg-ret

e1 ⇓i v1 (H, v1) ⇓fj (H ′, v ′1) e2[v ′1/x] ⇓k v2 (H ′, v2) ⇓fl (H ′′, v ′2)

(H, bind(e1, x.e2)) ⇓fi+j+k+l+1 (H ′′, v ′2)
cg-bind

e ⇓i v

(H, unlabel(e)) ⇓fi+1 (H, v)
cg-unlabel

e ⇓i v (H, v) ⇓fj (H ′, v ′)

(H, toLabeled(e)) ⇓fi+j+1 (H ′, v ′)
cg-toLabeled

e ⇓i v a 6∈ dom(H)

(H, new (e)) ⇓fi+1 (H[a 7→ v], a)
cg-ref

e ⇓i a

(H, !e) ⇓fi+1 (H, H(a))
cg-deref

e1 ⇓i a e2 ⇓j v

(H, e1 := e2) ⇓fi+j+1 (H[a 7→ v], ())
cg-assign

Figure 10.2: Forcing semantics of λcg

10.2 semantic model of λcg

We now describe our semantic model of λcg’s types. We use this model to show
that the type system is sound (Theorem 19) and later to prove the soundness of our
translations. Our semantic model uses step-indexed Kripke logical relations [4] and
is related to the semantic model of λamor. In particular, our model captures all the
invariants necessary to prove non-interference.

The central idea behind our model is to interpret each type in two different ways—
as a set of values (unary interpretation), and as a set of pairs of values (binary
interpretation). The binary interpretation is used to relate low-labeled types in the
two runs mentioned in the non-interference theorem, while the unary interpretation
is used to interpret high-labeled types independently in the two runs (since high-
labeled values may be unrelated across the two runs). What is high and what is low
is determined by the level of the observer (adversary), which is a parameter to our
binary interpretation.

Remark. Readers familiar with earlier models of IFC type systems [1, 26, 54] may
wonder why we need a unary relation, when prior work did not. The reason is that
we handle an effect (mutable state) in our model, which prior work did not. In the
absence of effects, the unary model is unnecessary. In the presence of effects, the
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unary relation captures what is often called the “confinement lemma” in proofs of
non-interference — we need to know that while the two runs are executing high
branches independently, neither will modify low-labeled locations.

10.2.1 Unary interpretation

The unary interpretation of types is shown in Fig. 10.3. The interpretation is actually a
Kripke model. It uses worlds, written θ, which specify the type for each valid (allocated)
location in the heap. For example, θ(a) = bool means that location a should hold a
boolean. The world can grow as the program executes and allocates more locations.
A second important component used in the interpretation is a step-index, written m
or n [2]. Step-indices are natural numbers, and are merely a technical device to break
a non-well-foundedness issue in Kripke models of higher-order state, like this one.
Our use of step-indices is standard and readers may ignore them.

The interpretation itself consists of three mutually inductive relations—a value
relation for types (labeled and unlabeled), written bτcV ; an expression relation for
labeled types, written bτcE; and a heap conformance relation, written (n, H) . θ. These
relations are well-founded by induction on the step indices n and types. This is the
only role of step-indices in our model.

The value relation bτcV defines, for each type, which values (at which worlds and
step-indices) lie in that type. For base types b, this is straightforward: All syntactic
values of type b (written JbK) lie in bbcV at any world and any step index. For pairs, the
relation is the intuitive one: (v1, v2) is in bτ1 × τ2cV iff v1 is in bτ1cV and v2 is in bτ2cV .
The function type τ1 → τ2 contains a value fix f(x).e at world θ if in any world θ ′ that
extends θ, if v is in bτ1cV , then (fix f(x).e) v or, equivalently, e[v/x][fix f(x).e/f], is in
the expression relation bτ2cE. We describe this expression relation below. Importantly,
we allow for the world θ to be extended to θ ′ since between the time that the function
λx.e was created and the time that the function is applied, new locations could be
allocated. The interpretation of ref ` τ contains all locations a whose type according
to the world θ matches [`] τ.

There are two things to note about the interpretation of [`] τ: a) the security label ` is
completely irrelevant in the unary interpretation (in contrast, labels play a significant
role in the binary interpretation) and b) as in λamor, a value of [`] τ is a value of type
τ, signifying the ghost nature of ` at the level of terms.

Finally, we consider C `1 `2 τ. The interpretation may look complex, but is relatively
straightforward: e is in bC `1 `2 τcV if for any heap H that conforms to the world
θe (an extension of θ) such that forcing e starting from H results in a value v ′ and
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bbcV , {(θ,m, v) | v ∈ JbK}

b1cV , {(θ,m, v | v ∈ J1K}

bτ1 × τ2cV , {(θ,m, (v1, v2)) | (θ,m, v1) ∈ bτ1cV ∧ (θ,m, v2) ∈ bτ2cV }
bτ1 + τ2cV , {(θ,m, inl( )v) | (θ,m, v) ∈ bτ1cV }∪ {(θ,m, inr( )v) | (θ,m, v) ∈ bτ2cV }
bτ1 → τ2cV , {(θ,m, fix f(x).e) | ∀θ ′ w θ, v, j < m.(θ ′, j, v) ∈ bτ1cV =⇒

(θ ′, j, e[v/x][fix f(x).e/f]) ∈ bτ2cE}
bref ` τcV , {(θ,m, a) | θ(a) = [`] τ}

b[`] τcV , {(θ,m, v | (θ,m, v) ∈ bτcV }
bC `1 `2 τcV , {(θ,m, e) |

∀k 6 m, θe w θ, H, j.(k, H) . θe ∧ (H, v) ⇓fj (H ′, v ′)∧ j < k =⇒

∃θ ′ w θe.(k− j, H ′) . θ ′ ∧ (θ ′,k− j, v ′) ∈ bτcV∧
(∀a.H(a) 6= H ′(a) =⇒ ∃` ′.θe(a) = [` ′] τ ′ ∧ `1 v ` ′)∧
(∀a ∈ dom(θ ′)\dom(θe).θ ′(a)↘ `1)}

bτcE , {(θ,n, e) | ∀i < n.e ⇓i v =⇒ (θ,n− i, v) ∈ bτcV }

(n, H) . θ , dom(θ) ⊆ dom(H)∧ ∀a ∈ dom(θ).(θ,n− 1, H(a)) ∈ bθ(a)cV

Figure 10.3: Unary interpretation for λcg
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a heap H ′, there is some extension θ ′ of θe to which H ′ conforms and at which v ′

is in bτcV . Additionally, all writes performed during the execution (defined as the
locations at which H and H ′ differ) must have labels above the program counter, `1.
In simpler words, the definition simply says that e lies in bC `1 `2 τcV if the resulting
value (obtained by forcing e) is in bτcV , it preserves heap conformance with worlds
and, importantly, the write effects are at labels above `1. (Readers familiar with proofs
of non-interference should note that the condition on write effects is our model’s
analogue of the so-called “confinement lemma”.)

The expression relation bτcE is extremely simple. It states that e is in bτcpc
E if the

value obtained by pure reduction of e is in the value interpretation of τ. The heap
conformance relation (n, H) . θ defines when a heap H conforms to a world θ. The
relation is simple; it holds when the heap H maps every location to a value in the
semantic interpretation of the location’s type given by the world θ.

10.2.2 Binary interpretation

The binary interpretation of types is shown in Fig. 10.4. This interpretation relates
two executions of a program with different inputs. Like the unary interpretation, this
interpretation is also a Kripke model. The worlds, written W, are different, though.
Each world is a triple W = (θ1, θ2, β̂). θ1 and θ2 are unary worlds that specify the
types of locations allocated in the two executions. Since executions may proceed in
sync on the two sides for a while, then diverge in a high-labeled branch, then possibly
re-synchronize, and so on, some locations allocated on one side may have analogues
on the other side, while other locations may be unique to either side. This is captured
by β̂, which is a partial bijection between the domains of θ1 and θ2. If (a1,a2) ∈ β̂, then
location a1 in the first run corresponds to location a2 in the second run. Any location
not in β̂ has no analogue on the other side.

As before, the interpretation itself consists of three mutually inductive relations—a
value relation for types (labeled and unlabeled), written dτeAV ; an expression relation for

labeled types, written dτeAE ; and a heap conformance relation, written (n, H1, H2)
A
. W.

These relations are all parameterized by the level of the observer (adversary), A, which
is also an element of L.

The value relation dτeAV defines, for each type, which pairs of values from the two
runs are related by that type (at each world, each step-index and each adversary). At
base types, b, only identical values are related. For pairs, the relation is the intuitive
one: (v1, v2) and (v ′1, v

′
2) are related in dτ1 × τ2eAV iff vi and v ′i are related in dτieAV for

i ∈ {1, 2}. Two values are related at a sum type only if they are both left injections or
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dbeAV , {(W,n, v1, v2) | v1 = v2 ∧ {v1, v2} ∈ JbK}

d1eAV , {(W,n, (), ()) | () ∈ J1K}

dτ1 × τ2eAV , {(W,n, (v1, v2), (v ′1, v ′2)) | (W,n, v1, v ′1) ∈ dτ1eAV ∧ (W,n, v2, v ′2) ∈ dτ2eAV }
dτ1 + τ2eAV , {(W,n, inl( )v, inl( )v ′) | (W,n, v, v ′) ∈ dτ1eAV }∪

{(W,n, inr( )v, inr( )v ′) | (W,n, v, v ′) ∈ dτ2eAV }
dτ1 → τ2eAV , {(W,n, fix f(x).e1, fix f(x).e2) |

∀W ′ wW, j < n, v1, v2.

((W ′, j, v1, v2) ∈ dτ1eAV =⇒
(W ′, j, e1[v1/x][fix f(x).e1/f], e2[v2/x][fix f(x).e2/f]) ∈ dτ2eAE )∧
∀θl wW.θ1, vc, j.

((θl, j, vc) ∈ bτ1cV =⇒ (θl, j, e1[vc/x][fix f(x).e1/f]) ∈ bτ2cE)∧
∀θl wW.θ2, vc, j.

((θl, j, vc) ∈ bτ1cV =⇒ (θl, j, e2[vc/x][fix f(x).e2/f]) ∈ bτ2cE)}
dref ` τeAV , {(W,n, a1, a2) |

(a1, a2) ∈W.β̂∧ W.θ1(a1) = W.θ2(a2) = [`] τ}

d[`] τeAV , {(W,n, v1, v2) | ValEq(A, W, `,n, v1, v2, τ)}

dC `1 `2 τeAV , {(W,n, v1, v2) |(
∀k 6 n, We wW, H1, H2.(k, H1, H2) . We∧

∀v ′1, v ′2, j.(H1, v1) ⇓fj (H ′1, v ′1)∧ (H2, v2) ⇓f (H ′2, v ′2)∧ j < k =⇒

∃W ′ wWe.(k− j, H ′1, H ′2) . W ′ ∧ ValEq(A, W ′,k− j, `2, v ′1, v ′2, τ)
)
∧

∀l ∈ {1, 2}.
(
∀k, θe wW.θl, H, j.(k, H) . θe ∧ (H, vl) ⇓fj (H ′, v ′l)∧ j < k =⇒

∃θ ′ w θe.(k− j, H ′) . θ ′ ∧ (θ ′,k− j, v ′l) ∈ bτcV∧
(∀a.H(a) 6= H ′(a) =⇒ ∃` ′.θe(a) = [` ′] τ ′ ∧ `1 v ` ′)∧
(∀a ∈ dom(θ ′)\dom(θe).θ ′(a)↘ `1)

)
}

dτeAE , {(W,n, e1, e2) | ∀i < n.e1 ⇓i v1 ∧ e2 ⇓ v2 =⇒ (W,n− i, v1, v2) ∈ dτeAV }

(n, H1, H2)
A
. W , dom(W.θ1) ⊆ dom(H1)∧ dom(W.θ2) ⊆ dom(H2)∧

(W.β̂) ⊆ (dom(W.θ1)× dom(W.θ2))∧

∀(a1, a2) ∈ (W.β̂).(W.θ1(a1) = W.θ2(a2)∧

(W,n− 1, H1(a1), H2(a2)) ∈ dW.θ1(a1)eAV )∧
∀i ∈ {1, 2}.∀m.∀ai ∈ dom(W.θi).(W.θi,m, Hi(ai)) ∈ bW.θi(ai)cV

Figure 10.4: Binary interpretation for λcg
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both right injections. At the function type τ1 → τ2, two functions are related if they
map values related at the argument type τ1 to expressions related at the result type
τ2. For technical reasons, we also need both the functions to satisfy the conditions
of the unary relation. At a reference type ref ` τ, two locations a1 and a2 are related
at world W = (θ1, θ2, β̂) only if they are related by β̂ (i.e., they are correspondingly
allocated locations) and their types as specified by θ1 and θ2 are equal to [`] τ.

The interpretation of the labeled type [`] τ, d[`] τeAV , relates values depending on the
ordering between ` and the adversary A. When ` v A, the adversary can see values
labeled `, so d[`] τeAV contains exactly the values related in dτeAV . When ` 6v A, values
labeled ` are opaque to the adversary (in colloquial terms, they are “high”), so they
can be arbitrary. In this case, d[`] τeAV is the cross product of the unary interpretation
of τ with itself. This is the only place in our model where the binary and unary
interpretations interact. This is all internalized in the definition of ValEq, described
in the technical report [52]. Finally we have the monadic type C `1 `2 τ which relates
pairs of values (at each world W, each step index n and each adversary A). The
definition is similar to that in the unary case: v1 and v2 lie in dC `1 `2 τeAV if the
values obtained by forcing are related in the value relation dτeAV , and the expressions
preserve heap conformance. The expression relation dτeAE is again extremely simple
as in the unary case.

The heap conformance relation (n, H1, H2)
A
. W defines when a pair of heaps H1, H2

conforms to a world W = (θ1, θ2, β̂). The relation requires that any pair of locations
related by β̂ have the same types (according to θ1 and θ2), and that the values stored
in H1 and H2 at these locations lie in the binary value relation of that common type.

10.2.3 Meta-theoretic properties

The primary meta-theoretic property of a logical relations model like ours is the
so-called fundamental theorem. This theorem says that any expression syntactically in
a type (as established via the type system) also lies in the semantic interpretation
(the expression relation) of that type. Here, we have two such theorems—one for the
unary interpretation and one for the binary interpretation.

To write these theorems, we define unary and binary interpretations of contexts,
bΓcV and dΓeAV , respectively. These interpretations specify when unary and binary
substitutions conform to Γ . A unary substitution δ maps each variable to a value
whereas a binary substitution γ maps each variable to two values, one for each run.

bΓcV , {(θ,n, δ) | dom(Γ) ⊆ dom(δ)∧ ∀x ∈ dom(Γ).(θ,n, δ(x)) ∈ bΓ(x)cV }
dΓeAV , {(W,n,γ) | dom(Γ) ⊆ dom(γ)∧ ∀x ∈ dom(Γ).(W,n,π1(γ(x)),π2(γ(x))) ∈ dΓ(x)eAV }
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Theorem 20 (Unary fundamental theorem). ∀Γ , θ, e, τ, δ,n.
Γ ` e : τ ∧
(θ,n, δ) ∈ bΓcV =⇒
(θ,n, e δ) ∈ bτcE

Theorem 21 (Binary fundamental theorem). ∀Γ , pc, W,A, e, τ, ,γ,n.
Γ ` e : τ ∧
(W,n,γ) ∈ dΓeAV =⇒
(W,n, e (γ↓1), e (γ↓2)) ∈ dτeAE

The proofs of these theorems proceed by induction on the given derivations of
Γ ` e : τ. The proofs are tedious, but not difficult or surprising. The primary difficulty,
as with all logical relations models, is in setting up the model correctly, not in proving
the fundamental theorems.
λcg’s non-interference theorem (Theorem 19) is a simple corollary of these two

theorems.





11
λ f g : T Y P E T H E O RY F O R F I N E - G R A I N E D I F C

In order to show that λcg can express everything that a standard fine-grained IFC
type system can, we would like to show an embedding from such a fine-grained type
system into λcg. To achieve that, we first have to introduce such a type system. We
call this type system λfg. λfg is not new (it is essentially a close variant of the SLam
calculus [26] or the exception free fragment of FlowCaml [50]), but its meta-theory
is new. Prior presentations of λfg either relied on syntactic proofs of soundness (as
in the case of FlowCaml [50]) or did not handle higher-order state (as in the case of
SLAM [26]).
λfg works on a call-by-value, eager language, which is a simplification of ML. The

language has all the usual expected constructs: Functions, pairs, sums, and mutable
references (heap locations). The expression !e dereferences the location that e evaluates
to, while e1 := e2 assigns the value that e2 evaluates to, to the location that e1 evaluates
to. The dynamic semantics of the language are defined by a “big-step” judgment
(H, e) ⇓j (H ′, v), which means that starting from heap H, expression e evaluates to
value v, ending with heap H ′. This evaluation takes j steps. The number of steps is
important only for our logical relations models. The rules for the big-step judgment
are standard, hence omitted here.

11.1 type system

Unlike λcg, every type τ in λfg, including a type nested inside another, carries a
security label. The security label represents the confidentiality level of the values the
type ascribes. Like in the case of λcg, here also we assume that all labels are drawn
from a given security lattice, denoted as L. It is also convenient to define unlabeled
types, denoted A, as shown in Fig. 11.1.

Typing rules. λfg uses the typing judgment Γ `pc e : τ. As usual, Γ maps free variables
of e to their types. The judgment means that, given the types for free variables as in Γ ,

79
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Expressions e ::= x | fix f(x).e | e e | (e, e) | fst(e) | snd(e) | inl(e) | inr(e) |

case e, x.e,y.e) | new e | !e | e := e

(Labeled) Types τ ::= A`

Unlabeled types A ::= b | 1 | τ
`e→ τ | τ× τ | τ+ τ | ref τ (b denotes a base type)

Typing judgment: Γ `pc e : τ

Γ , x : τ `pc x : τ
FG-var

Γ , f : (τ1( τ2)
⊥, x : τ1 ``e e : τ2

Γ `pc fix f(x).e : (τ1( τ2)
⊥

FG-fix

Γ `pc e1 : (τ1
`e→ τ2)

` Γ `pc e2 : τ1 L ` τ2 ↘ ` L ` pct ` v `e
Γ `pc e1 e2 : τ2

FG-app

Γ `pc e1 : τ1 Γ `pc e2 : τ2

Γ `pc (e1, e2) : (τ1 × τ2)⊥
FG-prod

Γ `pc e : (τ1 × τ2)` L ` τ1 ↘ `

Γ `pc fst(e) : τ1
FG-fst

Γ `pc e : τ1

Γ `pc inl(e) : (τ1 + τ2)⊥
FG-inl

Γ `pc e : (τ1 + τ2)
` Γ , x : τ1 `pct` e1 : τ Γ ,y : τ2 `pct` e2 : τ L ` τ↘ `

Γ `pc case e, x.e1,y.e2 : τ
FG-case

Γ `pc ′ e : τ
′ L ` pc v pc ′ L ` τ ′ <: τ

Γ `pc e : τ
FG-sub

Γ `pc e : τ L ` τ↘ pc

Γ `pc new e : (ref τ)⊥
FG-ref

Γ `pc e : (ref τ)` L ` τ <: τ ′ L ` τ ′ ↘ `

Γ `pc !e : τ ′
FG-deref

Γ `pc e1 : (ref τ)` Γ `pc e2 : τ L ` τ↘ (pct `)

Γ `pc e1 := e2 : 1
FG-assign

Γ `pc () : 1⊥
FG-unitI

Figure 11.1: λfg’s language syntax and type system (selected rules)
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e has type τ. The annotation pc is also a security label referred to as the “program
counter” label. This label is a lower bound on the write effects of e. The type system
ensures that any reference that e writes to is at a level pc or higher. This is necessary
to prevent information leaks via the heap. A similar annotation, `e, appears in the

function type τ1
`e→ τ2. Here, `e is a lower bound on the write effects of the body of

the function.
λfg’s typing rules are shown in Fig. 11.1. We describe some of the important rules.

In the rule for case analysis (FG-case), if the case analyzed expression e has label `,
then both the case branches are typed in a pc that is joined with `. This ensures that
the branches do not have write effects below `, which is necessary for IFC since the
execution of the branches is control dependent on a value (the case condition) of
confidentiality `. Similarly, the type of the result of the case branches, τ, must have a
top-level label at least `. This is indicated by the premise τ↘ ` and prevents implicit
leaks via the result. The relation τ ↘ `, read “τ protected at `” [1], means that if
τ = A`

′
, then ` v ` ′.

The rule for function application (FG-app) follows similar principles. If the function

expression e1 being applied has type (τ1
`e→ τ2)

`, then ` must be below `e and the
result τ2 must be protected at ` to prevent implicit leaks arising from the identity of
the function that e1 evaluates to.

In the rule for assignment (FG-assign), if the expression e1 being assigned has type
(ref τ)`, then τ must be protected at pc t ` to ensure that the written value (of type
τ) has a label above pc and `. The former enforces the meaning of the judgment’s pc,
while the latter protects the identity of the reference that e1 evaluates to.

All introduction rules such as those for functions, pairs and sums produce expres-
sions labeled ⊥. This label can be weakened (increased) freely with the subtyping
rule FGsub-label. The other subtyping rules are the expected ones, e.g., subtyping for

unlabeled function types τ1
`e→ τ2 is co-variant in τ2 and contra-variant in τ1 and `e

(contra-variance in `e is required since `e is a lower bound on an effect). Subtyping for
ref τ is invariant in τ, as usual. Selected subtyping rules are described in Fig. 11.2.

The main meta-theorem of interest to us is soundness. This theorem says that every
well-typed expression is non-interferent, i.e., the result of running an expression of
a type labeled low is independent of substitutions used for the high-labeled free
variables. This theorem is formalized below.

Theorem 22 (Non-interference for λfg). Suppose (1) `i 6v `, (2) x : A`i `pc e : bool`, and
(3) v1, v2 : A`i . If both e[v1/x] and e[v2/x] terminate, then they produce the same value
(of type bool).
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Subtyping judgments: L ` A <: A ′ and L ` τ <: τ ′

L ` ` v ` ′ L ` A <: A ′

L ` A` <: A ′`
′ FGsub-label

L ` ref τ <: ref τ
FGsub-ref

L ` τ ′1 <: τ1 L ` τ2 <: τ ′2 L ` ` ′e v `e

L ` τ1
`e→ τ2 <: τ

′
1

` ′e→ τ ′2

FGsub-arrow

Figure 11.2: λfg’s subtyping relation (selected rules)

By definition, non-interference, as stated above is a relational (binary) property, i.e.,
it relates two runs of a program. Next, we show how to build a semantic model of
λfg’s types that allows proving this property.

11.2 semantic model of λfg

We now describe our semantic model of λfg’s types. As in the λcg case, we set up a
unary interpretation and a binary interpretation for the types.

11.2.1 Unary interpretation

As before, the value relation bτcV in Fig. 11.3 defines, for each type, which values (at
which worlds and step-indices) lie in that type. Interpretation for base, pair and sum

type is exactly as we saw in the λcg case. The interpretation of function type τ1
`e→ τ2

changes because of the effect label `e on the function type. In the interpretation this is
reflected by indexing the expression relation with the extra pc label. fix f(x).e is in the

interpretation of τ1
`e→ τ2 at world θ if in any world θ ′ that extends θ, if v is in bτ1cV ,

then e[v/x], is in the expression relation bτ2c`eE . The type ref τ contains all locations
a whose type according to the world θ matches τ. Unlike λcg, we do not have an
explicit label on the reference. This is because the value contained in the reference is
implicitly labeled. As before, security labels play no role in the unary interpretation,
i.e. bA`cV = bAcV .

There is no monadic type in λfg. As a result, all the complexity pertaining to
preventing leaks via state effects goes into the expression relation. The expression
relation bτcpc

E basically states that an expression e is in bτcpc
E if for any heap H that

conforms to the world θ such that running e starting from H results in a value v ′ and
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bbcV , {(θ,m, v) | v ∈ JbK}

b1cV , {(θ,m, v) | v ∈ J1K}

bτ1 × τ2cV , {(θ,m, (v1, v2)) | (θ,m, v1) ∈ bτ1cV ∧ (θ,m, v2) ∈ bτ2cV }
bτ1 + τ2cV , {(θ,m, inl( )v) | (θ,m, v) ∈ bτ1cV }∪ {(θ,m, inr( )v) | (θ,m, v) ∈ bτ2cV }
bτ1

`e→ τ2cV , {(θ,m, fix f(x).e) | ∀θ ′.θ v θ ′ ∧ ∀j < m.∀v.(θ ′, j, v) ∈ bτ1cV =⇒
(θ ′, j, e[v/x][fix f(x).e/f]) ∈ bτ2c`eE }

bref τcV , {(θ,m, a) | θ(a) = τ}

bA`cV , bAcV

bτcpc
E , {(θ,n, e) | ∀H.(n, H) . θ∧ ∀j < n.(H, e) ⇓j (H ′, v ′) =⇒

∃θ ′.θ v θ ′ ∧ (n− j, H ′) . θ ′ ∧ (θ ′,n− j, v ′) ∈ bτcV∧
(∀a.H(a) 6= H ′(a) =⇒ ∃` ′.θ(a) = A`

′
∧ pc v ` ′)∧

(∀a ∈ dom(θ ′)\dom(θ).θ ′(a)↘ pc)}

(n, H) . θ , dom(θ) ⊆ dom(H)∧ ∀a ∈ dom(θ).(θ,n− 1, H(a)) ∈ bθ(a)cV

Figure 11.3: Unary value, expression, and heap conformance relations for λfg
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a heap H ′, there is a some extension θ ′ of θ to which H ′ conforms and at which v ′

is in bτcV . Additionally, all writes performed during the execution (defined as the
locations at which H and H ′ differ) must have labels above the program counter, pc.
In other words, the definition simply says that e lies in bτcpc

E if the resulting value
(obtained by executing e) is in bτcV , it preserves heap conformance with worlds and,
importantly, the write effects (produced via the execution of e) are at labels above pc.

The heap conformance relation (n, H) . θ defines when a heap H conforms to a
world θ. The formal definition of (n, H) . θ is similar to what we saw in the λcg case.

11.2.2 Binary interpretation

The binary interpretation of types is shown in Fig. 11.4. This interpretation relates
two executions of a program with different inputs.

The value relation dτeAV defines, for each type, which pairs of values from the two
runs are related by that type (at each world, each step-index and each adversary).
Again, interpretation at base, pair and sum type is similar to λcg. Interpretation for

the function type, τ1
`e→ τ2, also follows the same intuition of mapping related input

values to related expression with substitutions. The conditions of the unary relation
are kept again for technical reasons as in the λcg case. At a reference type ref τ, two
locations a1 and a2 are related at world W = (θ1, θ2, β̂) only if they are related by β̂
(i.e., they are correspondingly allocated locations) and their types as specified by θ1
and θ2 are equal to τ. For a labeled type A`, dA`eAV relates values depending on the
ordering between ` and the adversary A as for the type [`] τ in λcg.

Expressions are related via the dτeAE relation. The definition is similar to the
definition of the monadic type in the λcg case. The heap conformance relation

(n, H1, H2)
A
. W is defined in a way similar to λcg.

11.2.3 Meta-theoretic properties

As before, the meta-theoretic properties we prove about the model are the unary and
binary fundamental theorems. To state these we define unary and binary interpreta-
tions of contexts, bΓcV and dΓeAV .
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dbeAV , {(W,n, v1, v2) | v1 = v2 ∧ {v1, v2} ∈ JbK}

d1eAV , {(W,n, (), ()) | () ∈ J1K}

dτ1 × τ2eAV , {(W,n, (v1, v2), (v ′1, v ′2)) | (W,n, v1, v ′1) ∈ dτ1eAV ∧ (W,n, v2, v ′2) ∈ dτ2eAV }
dτ1 + τ2eAV , {(W,n, inl( )v, inl( )v ′) | (W,n, v, v ′) ∈ dτ1eAV }∪

{(W,n, inr( )v, inr( )v ′) | (W,n, v, v ′) ∈ dτ2eAV }
dτ1

`e→ τ2eAV , {(W,n, fix f(x).e1, fix f(x).e2) |

∀W ′ wW, j < n, v1, v2.((W ′, j, v1, v2) ∈ dτ1eAV =⇒
(W ′, j, e1[v1/x][fix f(x).e1/f], e2[v2/x][fix f(x).e2/f]) ∈ dτ2eAE )∧
∀θl wW.θ1, j, vc.

((θl, j, vc) ∈ bτ1cV =⇒ (θl, j, e1[vc/x][fix f(x).e1/f]) ∈ bτ2c`eE )∧
∀θl wW.θ2, j, vc.

((θl, j, vc) ∈ bτ1cV =⇒ (θl, j, e2[vc/x][fix f(x).e2/f]) ∈ bτ2c`eE )}
dref τeAV , {(W,n, a1, a2) | (a1, a2) ∈W.β̂∧ W.θ1(a1) = W.θ2(a2) = τ}

dA`eAV ,

 {(W,n, v1, v2) | (W,n, v1, v2) ∈ dAeAV } ` v A

{(W,n, v1, v2) | ∀i ∈ {1, 2}.∀m.(W.θi,m, vi) ∈ bAcV } ` 6v A

dτeAE , {(W,n, e1, e2) | ∀H1, H2, j < n.

(n, H1, H2)
A
. W ∧ (H1, e1) ⇓j (H ′1, v ′1)∧ (H2, e2) ⇓ (H ′2, v ′2) =⇒

∃W ′ wW.(n− j, H ′1, H ′2)
A
. W ′ ∧ (W ′,n− j, v ′1, v ′2) ∈ dτeAV }

(n, H1, H2)
A
. W , dom(W.θ1) ⊆ dom(H1)∧ dom(W.θ2) ⊆ dom(H2)∧

(W.β̂) ⊆ (dom(W.θ1)× dom(W.θ2))∧

∀(a1, a2) ∈ (W.β̂).(W.θ1(a1) = W.θ2(a2)∧

(W,n− 1, H1(a1), H2(a2)) ∈ dW.θ1(a1)eAV )∧
∀i ∈ {1, 2}.∀m.∀ai ∈ dom(W.θi).(W.θi,m, Hi(ai)) ∈ bW.θi(ai)cV

Figure 11.4: Binary value, expression and heap conformance relations for λfg
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bΓcV , {(θ,n, δ) | dom(Γ) ⊆ dom(δ)∧ ∀x ∈ dom(Γ).

(θ,n, δ(x)) ∈ bΓ(x)cV }
dΓeAV , {(W,n,γ) | dom(Γ) ⊆ dom(γ)∧ ∀x ∈ dom(Γ).

(W,n,π1(γ(x)),π2(γ(x))) ∈ dΓ(x)eAV }

The respective fundamental theorems are as follows.

Theorem 23 (Unary fundamental theorem). If Γ `pc e : τ and (θ,n, δ) ∈ bΓcV , then
(θ,n, e δ) ∈ bτcpc

E .

Theorem 24 (Binary fundamental theorem). If Γ `pc e : τ and (W,n,γ) ∈ dΓeAV , then
(W,n, e (γ↓1), e (γ↓2)) ∈ dτeAE , where γ↓1 and γ↓2 are the left and right projections of
γ.

The proofs of these theorems proceed by induction on the given derivations of
Γ `pc e : τ. The proofs are tedious, but not difficult or surprising. The primary
difficulty, as with all logical relations models, is in setting up the model correctly, not
in proving the fundamental theorems.
λfg’s non-interference theorem (Theorem 22) is a simple corollary of these two

theorems.
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T R A N S L AT I N G λF G T O λC G

Our goal in translating λfg to λcg is to show how a fine-grained IFC type system
can be simulated in a coarse-grained one. This shows that λcg which follows the
principles of λamor actually yields a very expressive type theory for IFC. We describe
the translation below, followed by formal properties of the translation. As a convention,
we use the subscript or superscript s to indicate source (λfg) elements, and t to indicate
target (λcg) elements. Thus, es denotes a source expression, whereas et denotes a
target expression.

12.1 type translation

The key idea of our translation is to map a source expression es satisfying `pc es : τ

to a monadic target expression et satisfying ` et : C pc ⊥ LτM. The pc used to type
the source expression is mapped as-is to the pc-label of the monadic computation.
The type of the source expression, τ, is translated by the function L·M that is described
below. However—and this is the crucial bit—the taint label on the translated monadic
computation is ⊥. To get this ⊥ taint we use the toLabeled construct judiciously. Not
setting the taint to ⊥ can cause a taint explosion in translated expressions, which
would make it impossible to simulate the fine-grained dependence tracking of λfg.

The function L·M defines how the types of source values are translated. This function
is defined by induction on labeled and unlabeled source types.

The translation should be self-explanatory. The only nontrivial case is the translation

of the function type τ1
`e→ τ2. A source function of this type is mapped to a target

function that takes an argument of type Lτ1M and returns a monadic computation (the
translation of the body of the source function) that has pc-label `e and eventually
returns a value of type Lτ2M.
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LbM = b

L1M = 1

Lτ1
`e→ τ2M = Lτ1M→ C `e ⊥ Lτ2M

Lτ1 × τ2M = Lτ1M× Lτ2M

Lτ1 + τ2M = Lτ1M+ Lτ2M

Lref τM = ref ` LAM when τ = A`

LA`M = [`] LAM

Figure 12.1: Type translation function for λfg to λcg translation

12.2 type-directed term translation

Given this translation of types, we next define a type derivation-directed translation
of expressions. This translation is formalized by the judgment Γ `pc es : τ  et.
The judgment means that translating the source expression es, which has the typing
derivation Γ `pc es : τ, yields the target expression et. This judgment is functional: For
each type derivation Γ `pc es : τ, it yields exactly one et. It is also easily implemented
by induction on typing derivations. The rules for the judgment are shown in Fig. 12.2.
The thing to keep in mind while reading the rules is that et should have the type
C pc ⊥ LτM.

We illustrate how the translation works using one rule, FC-app. In this rule, we

know inductively that the translation of e1, i.e., ec1, has type C pc ⊥ L(τ1
`e→ τ2)

`M,
which is equal to C pc ⊥ ([`] (Lτ1M→ C `e ⊥ Lτ2M)). The translation of e2, i.e., ec2 has
type C pc ⊥ Lτ1M. We wish to construct something of type C pc ⊥ Lτ2M.

To do this, we bind ec1 to the variable a, which has the type [`] (Lτ1M→ C `e ⊥ Lτ2M).
Similarly, we bind ec2 to the variable b, which has the type Lτ1M. Next, we unlabel a
and bind the result to variable c, which has the type Lτ1M → C `e ⊥ Lτ2M. However,
due to the unlabeling, the taint label on whatever computation we sequence after this bind
must be at least `. Next, we apply b to c, which yields a value of type C `e ⊥ Lτ2M. Via
subtyping, using the assumption pc v `e, we can weaken this to C pc ` Lτ2M. This
satisfies the constraint that the taint label be at least ` and is almost what we need,
except that we need the taint ⊥ in place of `.

To reduce the taint back to ⊥, we use the defined λcg function coerce_taint, which
has the type C pc ` τ → C pc ⊥ τ, when τ has the form [` ′] τ ′ with ` v ` ′. This last
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Γ , x : τ `pc x : τ ret x
FC-var

Γ , f : (τ1
`e→ τ2)

⊥, x : τ1 ``e e : τ2  ec1

Γ `pc fix f(x).e : (τ1
`e→ τ2)

⊥  toLabeled(ret(fix f(x).bind(toLabeled(retf), f ′.ec[f/f ′])))
FC-fix

Γ `pc e1 : (τ1
`e→ τ2)

`  ec1 Γ `pc e2 : τ1  ec2 L ` `t pc v `e L ` τ2 ↘ `

Γ `pc e1 e2 : τ2  coerce_taint(bind(ec1,a.bind(ec2,b.bind(unlabel a, c.(c b)))))
FC-app

Γ `pc e1 : τ1  ec1 Γ `pc e2 : τ2  ec2

Γ `pc (e1, e2) : (τ1 × τ2)⊥  bind(ec1,a.bind(ec2,b.toLabeled(ret(a,b))))
FC-prod

Γ `pc e : (τ1 × τ2)`  ec L ` τ1 ↘ `

Γ `pc fst(()e) : τ1  coerce_taint(bind(ec,a.bind(unlabel a,b.ret(fst(()b)))))
FC-fst

Γ `pc e : τ1  ec

Γ `pc inl(()e) : (τ1 + τ2)⊥  bind(ec,a.toLabeled(ret (inl(()a))))
FC-inl

Γ `pc e : (τ1 + τ2)
`  ec

Γ , x : τ1 `pct` e1 : τ ec1 Γ , x : τ1 `pct` e2 : τ ec2 L ` τ↘ `

Γ `pc case (, x.e,y.,x.e1,y.e2) : τ 
coerce_taint(bind(ec,a.bind(unlabel a,b.case (, x.b,y.,x.ec1,y.ec2))))

FC-case

Γ `pc e : (ref τ)`  ec L ` τ <: τ ′ L ` τ ′ ↘ `

Γ `pc!e : τ coerce_taint(bind(ec,a.bind(unlabel a,b.!b)))
FC-deref

Γ `pc e1 : (ref τ)`  ec1 Γ `pc e2 : τ ec2 τ↘ (pct `)

Γ `pc e1 := e2 : 1 
bind(toLabeled(bind(ec1,a.bind(ec2,b.bind(unlabel a, c.c := b)))),d.ret())

FC-assign

where, coerce_taint : C pc ` τ→ C pc ⊥ τ when τ = [` ′] τ ′ and ` v ` ′

coerce_taint , λx.toLabeled(bind(x,y.unlabel y))

Figure 12.2: Expression translation λfg to λcg (selected rules only)
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constraint is satisfied here since we know that τ2 ↘ `. The function coerce_taint
uses toLabeled internally and is defined in the figure.

This pattern of using coerce_taint, which internally contains toLabeled, to restrict
the taint to ⊥ is used to translate all elimination forms (application, projection, case,
etc.). Overall, our translation uses toLabeled judiciously to prevent taint from exploding
in the translated expressions.

Remark. Readers familiar with monads may note that our translation from λfg to
λcg is based on the standard interpretation of the call-by-value λ-calculus in the
computational λ-calculus [44]. Our translation additionally accounts for the pc and
security labels, but is structurally the same.

12.3 properties of the translation

Our translation preserves typing by construction. This is formalized in the following
theorem. The context translation LΓM is defined pointwise on all types in Γ .

Theorem 25 (Typing preservation). If Γ `pc es : τ in λfg, then there is a unique et such
that Γ `pc es : τ et and that et satisfies LΓM ` et : C pc ⊥ LτM in λcg.

An immediate corollary of this theorem is that well-typed source programs translate
to non-interfering target programs (since target typing implies non-interference in the
target).

Next, we show that our translation preserves the meaning of programs, i.e., it is
semantically “correct”. For this, we define a cross-language logical relation, which
relates source values (expressions) to target values (expressions) at each source type.
This relation has three key properties: (A) A source expression and the translation (of
the source) are always in the relation (Theorem 26), (B) Related expressions reduce to
related values, and (C) At base types, the relation is the identity. Together, these imply
that our translation preserves the meanings of programs in the sense that a function
from base types to base types maps to a target function with the same extension.

An excerpt of the relation is shown in Fig. 12.3. The relation is defined over source

(λfg) types, and is divided (like our earlier relations) into a value relationb·cβ̂V , an

expression relation b·cβ̂E , and a heap relation (n, Hs, Ht)
β̂
. sθ, which we omit here.

The relations specify when a source value (resp. expression, heap) is related to a
target value (resp. expression, heap) at a source unary world sθ, a step index n and
a partial bijection β̂ that relates source locations to corresponding target locations.
The relation actually mirrors the unary logical relation for λfg. The definition of the
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bbcβ̂V , {(sθ,m, sv, tv) | sv ∈ JbK∧ tv ∈ JbK∧ sv = tv}

b1cβ̂V , {(sθ,m, sv, tv) | sv ∈ J1K∧ tv ∈ J1K}

bτ1 × τ2cβ̂V , {(sθ,m, (sv1, sv2), (tv1, tv2)) |

(sθ,m, sv1, tv1) ∈ bτ1cβ̂V ∧ (sθ,m, sv2, tv2) ∈ bτ2cβ̂V }
bτ1 + τ2cβ̂V , {(sθ,m, inl( )sv, inl( )tv) | (sθ,m, sv, tv) ∈ bτ1cβ̂V } ∪

{(sθ,m, inr( )sv, inr( )tv) | (sθ,m, sv, tv) ∈ bτ2cβ̂V }
bτ1

`e→ τ2cβ̂V , {(sθ,m, fix f(x).es, fix f(x).et) |

∀sθ ′ w sθ, sv, tv, j < m, β̂ v β̂ ′.(sθ ′, j, sv, tv) ∈ bτ1cβ̂
′

V =⇒
(sθ ′, j, es[sv/x][fix f(x).es/f], et[tv/x][fix f(x).et/f]) ∈ bτ2cβ̂

′

E }

bref τcβ̂V , {(sθ,m, as, at) | sθ(as) = τ∧ (sa, ta) ∈ β̂}
bA` ′cβ̂V , {(sθ,m, sv, tv) | (sθ,m, sv, tv) ∈ bAcβ̂V }

bτcβ̂E , {(sθ,n, es, et) |

∀Hs, Ht.(n, Hs, Ht)
β̂
. sθ∧ ∀i < n, sv.(Hs, es) ⇓i (H ′s, sv) =⇒

∃H ′t, tv.(Ht, et) ⇓f (H ′t, tv)∧ ∃sθ ′ w sθ, β̂ ′ w β̂.(n− i, H ′s, H ′t)
β̂ ′
. sθ ′

∧(sθ ′,n− i, sv, tv) ∈ bτcβ̂
′

V }

(n, Hs, Ht)
β̂
. sθ , dom(sθ) ⊆ dom(Hs)∧

β̂ ⊆ (dom(sθ)× dom(Ht))∧

∀(a1, a2) ∈ β̂.(sθ,n− 1, Hs(a1), Ht(a2)) ∈ bsθ(a1)cβ̂V

Figure 12.3: Cross-language value and expression relations for the λfg to λcg translation
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expression relation forces property (B) above, while the value relation at base types
forces property (C).

Our main result is again a fundamental theorem, shown below. The symbols δs

and δt denote unary substitutions in the source and target, respectively. The relation

bΓcβ̂V (described in the technical report [52]) is the obvious one, obtained by pointwise
lifting of the value relation.

Theorem 26 (Fundamental theorem). If Γ `pc es : τ  et and (sθ,n, δs, δt) ∈ bΓcβ̂V ,

then (sθ,n, es δs, et δt) ∈ bτcβ̂E .

The proof of this theorem is by induction on the derivation of Γ `pc es : τ  et.
This theorem has two important consequences. First, it immediately implies property
(A) above and, hence, completes the argument that our translation is semantically
correct. Second, the theorem, along with the binary fundamental theorem for λcg,
allows us to re-derive the non-interference theorem for λfg (Theorem 22) directly.
This re-derivation is important because it provides confidence that our translation
preserves the meaning of security labels. As a simple counterexample, it is perfectly
possible to translate λfg programs to λcg programs, preserving both typing and
semantics, by mapping all source labels to the same target label (say, ⊥). However, we
would not be able to re-derive the source non-interference theorem using the target’s
properties if this were the case.



13
T R A N S L AT I N G λC G T O λF G

This chapter describes the translation in the other direction—from λcg to λfg. This
translation coupled with the translation from λfg to λcg gives a constructive proof of
the equi-expressiveness of the two styles of IFC type systems. The overall structure
(but not the details!) of this translation are similar to that of the earlier λfg to λcg

translation, so we skip some boilerplate material here. The superscript or subscript s
(source) now marks elements of λcg and t (target) marks elements of λfg.

13.1 type translation

The key idea of the translation is to map a source (λcg) expression es satisfying ` es : τ
to a target (λfg) expression et satisfying `> et : JτK. The type translation JτK is defined
below. The pc for the translated expression is > because, in λcg, all effects are confined
to a monad, so at the top-level, there are no effects. In particular, there are no write
effects, so we can pick any pc; we pick the most informative pc, >.

The type translation, JτK, is defined by induction on τ.

JbK = b⊥

Jτ1 → τ2K = (Jτ1K
>→ Jτ2K)⊥

Jτ1 × τ2K = (Jτ1K× Jτ2K)⊥

Jτ1 + τ2K = (Jτ1K+ Jτ2K)⊥

Jref ` τK = (ref (JτK+ 1)`)⊥

JC `1 `2 τK = (1
`1→ (JτK+ 1)`2)⊥

J[`] τK = (JτK+ 1)`

The most interesting case of the translation is that for C `1 `2 τ. Since a λcg value
of this type is a suspended computation, we map this type to a thunk—a suspended
computation implemented as a function whose argument has type 1. The pc-label on
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the function matches the pc-label `1 of the source type. The taint label `2 is placed
on the output type JτK using a coding trick: (JτK+ 1)`2 . The expression translation of
monadic expressions only ever produces values labeled inl(), so the right type of the
sum, 1, is never reached during the execution of a translated expression. The same
coding trick is used to translate labeled and ref types1.

13.2 type-directed term translation

The expression translation is directed by source typing derivations and is defined
by the judgment Γ ` es : τ  et, some of whose rules are shown in Fig. 13.1
(full translation can be found in the technical report [52]). The translation is fairly
straightforward (given the type translation). The only noteworthy aspect is the use
of the injection inl() wherever an expression of the type form (JτK+ 1)` needs to be
constructed.

Γ ` e : [`] τ eF

Γ ` unlabel(e) : C > ` τ fix __.eF
unlabel

Γ ` e : C `1 `2 τ eF

Γ ` toLabeled(e) : C `1 ⊥ ([`2] τ) fix __.inl(eF ())
toLabeled

Γ ` e : τ eF

Γ ` ret(e) : C `1 `2 τ fix __.inl(eF)
ret

Figure 13.1: Expression translation λcg to λfg (selected rules only)

13.3 properties of the translation

The translation preserves typing by construction, as formalized in the following
theorem. The context translation JΓK is defined pointwise on all types in Γ .

Theorem 27 (Typing preservation). If Γ ` es : τ in λcg, then there is a unique et such
that Γ ` es : τ et and that et satisfies JΓK `> et : JτK in λfg.

1 We could also have used a different coding in place of (JτK + 1)`2 . For example, (JτK× 1)`2 works
equally well.
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Again, a corollary of this theorem is that well-typed source programs translate to
non-interfering target programs.

We further prove that the translation preserves the semantics of programs. Our
approach is the same as that for the λfg to λcg translation—we set up a cross-language
logical relation, this time indexed by λcg types, and show the fundamental theorem.
From this, we derive that the translation preserves the meanings of programs. Addi-
tionally, we derive the non-interference theorem for λcg using the binary fundamental
theorem of λfg, thus gaining confidence that our translation maps security labels
properly. This development mirrors that for our earlier translation. We defer the
details to the technical report [52].
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We focus on related work directly connected to our contributions— coarse-grained
IFC type system, logical relations for IFC type systems and language translations that
care about IFC.

Coarse-grained IFC type systems. Besides λamor, the IFC type system that comes
closest to λcg is the SLIO type system which is a static fragment of the hybrid HLIO
system from [13]. However, there is a crucial difference in how the two type systems
interpret the monadic type, C `1 `2 τ. λcg interprets the two indices on the monadic
type as the pc-label and the taint label, respectively. However, SLIO’s interpretation is
very different. The SLIO monad is an instance of the Hoare state monad from [47]. As
a result, SLIO interprets the two labels as the starting taint and the ending taint of the
computation. Consequently, it is an invariant in SLIO that `1 v `2. This makes SLIO
more restrictive than λcg. The toLabeled construct in SLIO cannot always lower the
final taint to ⊥. SLIO’s toLabeled rule is:

Γ ` e : C ` ` ′ τ

Γ ` toLabeled(e) : C ` ` ([` ′] τ)
SLIO-toLabeled

This restrictive rule makes it impossible to translate from λfg to SLIO in the way
we translate from λfg to λcg. Our observation here is that SLIO’s restriction, inherited
from a prior system called LIO, is not important for statically enforced IFC and
eliminating it allows a simple embedding of a fine-grained IFC type system.

Nonetheless, we did investigate further whether we can embed λfg into the static
fragment of the unmodified SLIO. The answer is still affirmative, but the embedding
is complex and requires nontrivial quantification over labels. Part II of the technical
appendix of [53] contains a complete account of this embedding, which we do not
repeat in this thesis.

HLIO also has two constructs, getLabel and labelOf, that allow reflection on labels.
However, these constructs are meaningful only because HLIO uses hybrid (both
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static and dynamic) enforcement and carries labels at runtime. In a purely static
enforcement, such as λcg’s, labels are not carried at runtime, so reflection on them is
not meaningful.

Logical relations for IFC type systems. Logical relations for IFC type systems have
been studied before to a limited extent. Sabelfeld and Sands develop a general theory
of models of information flow types based on partial-equivalence relations (PERs),
the mathematical foundation of logical relations [54]. However, they do not use these
models for proving any specific type system or translation sound. The pure fragment
of the SLam calculus was proven sound (in the sense of non-interference) using a
logical relations argument [26, Appendix A]. However, to the best of our knowledge,
the relation and the proof were not extended to mutable state.

The proof of non-interference for FlowCaml [50], which is very close to SLam,
considers higher-order state (and exceptions), but the proof is syntactic, not based on
logical relations. The dependency core calculus (DCC) [1] also has a logical relations
model but, again, the calculus is pure. The DCC paper also includes a state-passing
embedding from the IFC type system of Volpano, Irvine and Smith [56], but the state
is first-order.

Mantel et al. use a security criterion based on an indistinguishability relation that
is a PER to prove the soundness of a flow-sensitive type system for a concurrent
language [42]. Their proof is also semantic, but the language is first-order.

In contrast to these prior pieces of work, our logical relations handle higher-order
state, and this complicates the models substantially; we believe we are the first to do
so in the context of IFC.

Our models are based on the now-standard step-indexed Kripke logical relations [4],
which have been used extensively for showing the soundness of program verification
logics. Our model for λfg is directly inspired by Cicek et al.’s model for a pure calculus
of incremental programs [17]. That calculus does not include state, but the model
is structurally very similar to our model of λfg in that it also uses a unary and a
binary relation that interact at labeled types. Extending that model with state was a
significant amount of work, since we had to introduce Kripke worlds. Our model for
λcg has no direct predecessor; we developed it using ideas from our model of λfg and
λamor. (DCC is also coarse-grained and uses a labeled monad to track dependencies,
but the model of DCC is quite different from ours in the treatment of the monadic
type.)

Language translations that care about IFC. Language translations that preserve
information flow properties appear in the DCC paper. The translations start from
SLam’s pure fragment and the type system of Volpano, Irvine and Smith and go
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into DCC. The paper also shows how to recover the non-interference theorem of the
source of a translation from properties of the target, a theorem we also prove for our
translations. Barthe et al. [10] describe a compilation from a high-level imperative
language to a low-level assembly-like language. They show that their compilation is
type and semantics preserving. They also derive non-interference for the source from
the non-interference of the target. Fournet and Rezk [22] describe a compilation from
an IFC-typed language to a low-level language where confidentiality and integrity are
enforced using cryptography. They prove that well-typed source programs compile
to non-interfering target programs, where the target non-interference is defined in
a computational sense. Algehed and Russo [5] define an embedding of DCC into
Haskell. They also consider an extension of DCC with state but, to the best of our
knowledge, they do not prove any formal properties of the translation.
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A B S T R A C T I N G T H E G H O S T S TAT E

The two type theories that we have seen so far operate on specific instances of ghost
state: potential in the case of λamor and the confidentiality label in the case of
λcg. In this chapter, we show how to unify the two type theories using an abstract
monoidal structure which generalizes both the potential and the confidentiality label.
We describe the changes needed for this generalization and prove them sound.

15.1 difference in the proof theories of λamor
and λcg

As mentioned earlier, both λamor and λcg are based on the use of similar ghost
operations like store and toLabeled, and release and unlabel. However from a proof-
theoretic perspective there are subtle differences in their typing rules which makes it
hard to unify them. To highlight the differences, we isolate the relevant rules from
λamor (T-store and T-release) and the corresponding rules from λcg (CG-toLabeled
and CG-unlabel) in Fig. 15.1 (for simplification, here we write the typing judgment of
λamor with the linear context, Γ , only).

Rules T-store and CG-toLabeled introduce the modal type of λamor and λcg

respectively. However, the way this is achieved is a bit different. T-store, on one hand,
obtains the potential p associated with [p] τ from the context and represents it as a
cost (/resource requirement) on the monad in the conclusion. CG-toLabeled, on the
other hand, obtains the corresponding label ` ′ associated with [` ′] τ from taint-label
on the monad in the premise, while the resulting taint-label on the monad in the
conclusion is ⊥1. Similarly, T-release uses the given potential (p1) with e1 to fulfill the
resource requirement of the continuation e2 partially. CG-unlabel, on the other hand,
moves the complete label from the labeled type in the premise to the taint-label on
the monadic type in the conclusion.

1 The pc-label on the λcg’s monad is irrelevant in the context of this generalization. As modal type of
λcg only interacts with the taint-label and not with the pc-label whose purpose is only to prevent leaks
via write effects.
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Γ ` e : τ

Γ ` store e : Mp ([p] τ)
T-store

Γ1 ` e1 : [p1] τ1

Γ2, x : τ1 ` e2 : M(p1 + p2) τ2

Γ1 + Γ2 ` release x = e1 in e2 : Mp2 τ2
T-release

Γ ` e : C ` ` ′ τ

Γ ` toLabeled(e) : C ` ⊥ ([` ′] τ)
CG-toLabeled

Γ ` e : [`] τ

Γ ` unlabel(e) : C > ` τ
CG-unlabel

Figure 15.1: Typing rules for ghost operations: λamor and λcg

15.2 reconciling the differences

We attribute the above differences to the difference in the polarities of the ghost state in
λamor and λcg. In λamor the polarity of the potential in the modal type is different
from the polarity of the potential in the monad – the former represents the available
potential while the later represents the required potential. On the other hand λcg

associates the same polarity to the confidentiality label both in the modal type and in
the monad – both represent the taint label.

For the purpose of unifying the two proof theories, we flip the polarity of the
potential in the monad by representing it as a negative potential. This means that in
the monadic type M(−p) τ, −p now represents availability of −p units of resources
(which is still the same as the original interpretation of a resource requirement/cost
of p units). Additionally we generalize the types of store and toLabeled to make their
typing rules match as shown in Fig. 15.2. And finally for the unlabel construct, we
represent it in the same let style as the release rule. The new let style of unlabel is
merely a syntactic sugar for bind((unlabel e1), x.e2).

Γ ` e : M(−p1) τ

Γ ` store e : M(−(p1 + p2)) ([p2] τ)
T-store

Γ1 ` e1 : [p1] τ1

Γ2, x : τ1 ` e2 : M(−(p1 + p2)) τ2

Γ1 + Γ2 ` release x = e1 in e2 : M(−p2) τ2
T-release

Γ ` e : C ` (`1 t `2) τ

Γ ` toLabeled(e) : C ` `1 ([`2] τ)
CG-toLabeled

Γ ` e1 : [`1] τ Γ , x : τ ` e2 : C `1 `2 τ
′

Γ ` unlabel(e1, x.e2) : C `1 (`1 t `2) τ ′
CG-unlabel

Figure 15.2: Modified typing rules for ghost operations: λamor and λcg

We have checked that the above changes do not break the soundness of λamor. The
technical details of these changes along with the soundness proof for both λamor and
λcg can be found in the technical report [52].

With the above modifications, we can now replace the ghost state with a commu-
tative monoid: set m with an associative operation �. In the case of λamor, m is the
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set of real numbers and � is the addition operation over them. Additionally, since
every element has an inverse, the monoid is actually a group in the case of λamor.
In the case of λcg, m is the set of confidentiality labels drawn from a lattice and �
represents the least upper bound operation (t).
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C O N C L U S I O N A N D F U T U R E W O R K

16.1 concluding remarks

In this thesis we presented λamor, the first fully general affine type theory for
amortized resource analysis of higher-order programs. λamor shows how by using
well-understood concepts from sub-structural and modal type systems along with a
new modal type for representing potential, we can define a sound and compositional
type theory for verification of amortized bounds. Besides this, we also show that
λamor is highly expressive via encoding of several non-trivial examples from different
domains. Further, we show that cost verification using λamor is relatively complete
for PCF, which means that all terminating programs of PCF can be type checked in
λamor with their precise cost up to a constant factor.

Next, we shown that ideas developed via λamor are quite general and can be
applied to other domains. We showed this by building a similar type theory for the
domain of Information Flow Control (IFC). In particular, we showed that by using
similar type theoretic constructs and ghost operations, we can build a type theory for
coarse-grained IFC, λcg. Via λcg we showed how to build Kripke models for IFC with
full higher-order state, something which was not known prior to this work. Besides
proving the soundness of λcg, we also show that λcg is as expressive to an existing
fine-grained IFC type system (λfg).

Finally, we showed that the two ghost states, namely, potential and the confidential-
ity label used in λamor and λcg are special instances of a more generic ghost state.
We showed how to unify the two type theories using an abstract monoidal structure.

16.2 some directions for future work

There are several directions for future work. We highlight some of these here.
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16.2.1 Future directions for λamor

Lower-bound analysis. So far we have used λamor only for verification of resource
upper bounds. We believe that by interpreting potential in a dual manner, i.e., as an
obligation to burn resources, we can derive a calculus for establishing lower bounds.

Relational interpretation of potential. λcg studies both the unary and the relational
interpretation of confidentiality labels. While we understand the unary interpretation
of potentials, their relational interpretation remains to be understood. Such a develop-
ment might be non-trivial as, to the best of our knowledge amortized analysis has not
been explored in a relational setting.

16.2.2 Future directions for λcg

Full abstraction. Since our translations between λcg and λfg preserve typed-ness,
they map well-typed source programs to non-interfering target programs. However,
an open question is whether they preserve contextual equivalence, i.e., whether they
are fully abstract. Establishing full abstraction will allow translated source expressions
to be freely co-linked with target expressions. We have not attempted a proof of
full abstraction yet, but it looks like an interesting next step. We note that since
our dynamic semantics (big-step evaluation) are not cognizant of IFC (which is
enforced completely statically), it may be sufficient to generalize our translations to
simply-typed variants of λfg and λcg, and prove those fully abstract.
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