
A graded modal approach
to relaxed semantic declassification

Vineet Rajani
University of Kent
United Kingdom

V.Rajani@kent.ac.uk

Alex Coleman
University of Kent
United Kingdom

ac2049@kent.ac.uk

Hrutvik Kanabar
University of Kent∗

United Kingdom
hrk32@cantab.ac.uk

Abstract—In this paper we present Declassification Core Cal-
culus (DeCC), a graded modal type theory for relaxed semantic
declassification, a declassification criterion inspired from De-
limited Release and Relaxed Noninterference. We build upon
Dependency Core Calculus (DCC) that already has a graded
monad for classification of information. DeCC inherits DCC’s
graded monad, but adds a new modality for the purpose of
declassification. We build a logical relation model describing both
the unary and relational semantics of the types including the two
graded modalities, and use this model to prove the soundness
of DeCC. We describe how our new modality interacts with
DCC’s graded monad via distributive laws, and also describe
the conditions under which our new modality forms a comonad.
This work has been mechanised in the HOL4 theorem prover.

Index Terms—Graded Modal Types; Information Flow Con-
trol; Semantic Declassification

I. INTRODUCTION

Ensuring that programs do not leak confidential information
is subtle. Mere access control and cryptography are not enough
to provide confidentiality guarantees [1], as they can only con-
trol who gets access to the information, but not what happens
to the information after it has been released. Providing end-to-
end confidentiality guarantees require tracking and controlling
the flow of information as it percolates through the system,
this is achieved using Information Flow Control (IFC). In
a language-based setting, IFC works by associating security
labels (denoting a confidentiality level) with data and tracking
these labels through the execution of the program. The security
labels are related using a flow relation (often described using a
lattice structure) defining the permitted flow of information. A
sound enforcement of IFC must guarantee that only permitted
flows are allowed.

A soundness criterion for IFC is often defined as a variant
of noninterference [2] (there is no interference/influence of
secret inputs on the public outputs of a program). Technically,
noninterference is an instance of a hyperproperty [3] which
involves reasoning about two executions of the same program
on different secrets. Modal type systems provide an attractive
avenue for enforcing and reasoning about noninterference
statically, modal type constructors record security labels as
grades and typing rules for those modal types help track and
prevent the flow of undesired information. Dependency Core

∗ Part of this research was undertaken while this author was affiliated with
the University of Kent.

Calculus (DCC) [4] is a stereotypical example of a graded
modal type theory for information flow control. DCC makes
use of ♢ℓτ

1 a modal possibility operator graded with a security
label, often just referred to as a graded monad in this setting, to
track and control the flow of information for a core functional
calculus and describe its categorical semantics. Such a use
of graded monads was later extended to track the flow of
information for a language with higher-order mutable state
in the CG (short for Coarse Grained) type system [5], [6].
CG uses a doubly graded monad with two separate labels
to track information via both read and write effects. The
static semantics of CG is defined using a Kripke possible-
world model, which is then used to derive the noninterference
theorem.

While there is a strong evidence supporting the connec-
tion between modal logic and information classification in a
language-based setting, such a connection (both proof theoret-
ically and semantically) is not well understood when it comes
to aspects pertaining to properties of information declassi-
fication. This work aims to bridge this gap by introducing
a new graded modal type theory which uncovers some of
those connections. Central to our type theory is a new modal
operator, □ϕτ (simplified form), intuitively specifying the type
of terms that can be inspected/declassified using the policy ϕ.
Unlike the graded modalities in DCC and CG, the grade ϕ of
our □ modality is a lambda expression from the term language
of our calculus, and hence has a flavour of a dependent
graded modality [7] where grades depend on terms. To the
best of our knowledge, this is the first work that describes the
use of dependent graded types to reason about information
declassification.

The focus of this work is on the “what” dimension [8]
of information disclosure. This dimension of declassification
has been classically studied in approaches like delimited
release [9] and relaxed noninterference [10]. Delimited release
studies this problem in an imperative and heap-based setting,
and allows for reasoning about declassification of secrets wrt
initial memory. Our approach is complementary, we study
this problem in a functional and higher-order setup, and our
approach permits reasoning about composition and decom-

1DCC uses the symbol T for the graded monad, but we prefer ♢ as DCC’s
monad is a graded version of the possibility (♢) modality from the modal
logic S4.

position of policies in an elegant manner. This allows us to
express scenarios where a policy can itself return a policy-
controlled data which can be declassified at a later point
(Section VI-C), we believe such examples are not directly
expressible in the delimited release framework.

Our approach also enhances another classical approach
called relaxed noninterference [10]. The approach of relaxed
noninterference is more type-driven like ours, it allows for
declassification policies to appear in types and is also setup
in a higher-order setting. However, the relaxed noninterfer-
ence framework is designed to work with a security lattice
constructed over sets of policies, while in our approach we
keep the syntactic category of security labels and declassifica-
tion policies completely separate. We believe this makes our
approach more general and can allow for choosing different
policies to declassify to different principals. Also, the relaxed
noninterference approach is proven sound wrt a syntactic
slicing-based soundness criterion, while we choose a semantic
indistinguishability-based security condition. We also allow for
reasoning with semantically-secure policies, policies that are
actually secure but cannot be proved so under the restrictions
of a security type system. This allows us to reason about
scenarios pertaining to partial and conditional declassification
(Section VI-D) via operation like split, which we believe
cannot be directly expressed in the relaxed-noninterference
framework.

Overview of our work: In this paper we present DeCC,
short for Declassification Core Calculus, a core language
with a graded modal type theory to reason about information
declassification. In particular, DeCC uses two graded modal-
ities, one for classification and the other for declassification
of information. For classification, DeCC inherits the graded
monad ♢ℓτ of DCC, which allows for annotating a type τ with
a security label ℓ. For declassification, DeCC introduces a new
graded modality, □ϕ,τ ′τ . The new box modality ascribes the
type of a term of type τ which can be consumed by a policy ϕ
of type τ → τ ′. In particular, τ can be the type of a secret like
♢HN (a high/secret labelled natural number) and the policy ϕ
can have a type like ♢HN → ♢LN (a function which reads a
secret number as input and then returns a low/public number
as output). Thus, applying ϕ to the given secret can lead to
a potential declassification. Intuitively, only terms inside the
box are declassifiable and the typing rules of DeCC are setup
to ensure that the only way to declassify a secret inside a box
is through the application of the allowed policy in its type.

DeCC also incorporates an ability to reason about declassi-
fication with semantically secure policies (functions which are
actually secure but cannot be proved so within the syntactic
constraints of a security type system). For example, the
function which takes a secret number, doubles it and returns
the parity of the result as a low output, λx.(2 ∗ x)%2 where
% denotes the remainder operator, will be rejected by most
information flow type systems because there is a syntactic
dependency of the secret x on the output. However, this
program is actually secure, as no matter what the value of
x is it will always produce a 0 as the result. In DeCC we can

use such functions as policies to release information. We for-
malise such a semantic security using the technique of logical
relations inspired from the semantics of CG [5], [6] (which
is a type system for vanilla noninterference and does not
incorporate any notion of declassification). We describe several
operations over terms of this new box modality which permit
a variety of declassification use cases. On the meta-theory
side, we describe how our new box modality interacts with
the DCC’s graded monad via distributive laws and reflect on
their practical significance in the context of information flow.
We also describe the conditions under which our box modality
forms a comonad. Finally, we provide a logical relations based
proof of soundness against Relaxed Semantic Declassification
(our soundness criterion), inspired from delimited release and
relaxed noninterference.

Summary of contributions: To summarise, we make the
following contributions in this paper.

• We present DeCC, a core calculus for declassification
with a graded modal type theory for enforcing declassi-
fication guarantees statically over higher-order functional
programs. To reason about declassification, DeCC in-
troduces a new graded modality (□ϕ,τ ′τ) which allows
controlled inspection and release of secrets using the
policy ϕ. The policy ϕ is a function from the term
calculus of DeCC, and hence introduces a flavour of
dependent grades for reasoning about declassification.

• Additionally, our type theory is built to accommodate
reasoning with policies which can be both declassifying
and semantically noninterfering. This allows us to express
a variety of practical declassification scenarios like partial
and conditional declassification, and state machine-based
declassification.

• On the meta theory side, we describe how our new
declassification modality interacts with the graded monad
of DCC via distributive laws and also describe the con-
ditions under which our new modality forms a comonad.

• We build a logical relation model for the types of DeCC,
which we use to prove our type theory sound and also
to provide semantic invariants on the declassification
policies.

• Finally, we have mechanised the entire type theory in-
cluding the logical relation models, meta-theoretic re-
sults and the soundness proof using the HOL4 theorem
prover [11].

Organisation: We begin with a brief background on the
relevant ideas from prior work in Section II. In Section III
we describe our language, DeCC, both its statics and its
dynamics. After that we describe the type-theoretic aspects of
DeCC in Section IV. This includes describing its typing rules,
semantic model and soundness. In Section V we discuss some
meta-theoretic aspects which includes showing the comonadic
nature of the box modality under certain restrictions, and
describing its interaction with the graded monad. Section VI
describes several examples to demonstrate the applicability
of DeCC for encoding different kinds of declassification

policies. In Section VII we describe a weaker type system
to type check policy code. We also briefly talk about an
alternate development of DeCC with call-by-name semantics,
and finally share some thoughts on extension of DeCC with
other language features. We provide a description of related
work in Section VIII and finally conclude in Section IX.

II. BACKGROUND

In this section we provide a brief background on the ideas
we build upon: from graded modal type theories namely DCC
and CG, and relevant declassification approaches.

A. Graded modal types for IFC

Graded modal types provide an elegant formalisation and
enforcement of information flow properties. To the best of
our knowledge the first application of graded modal types for
information flow control was demonstrated via DCC [4] (short
for Dependency Core Calculus). The core idea of DCC is the
use of a graded monad to annotate types with security labels,
and tracking of such labels via typing of the monads unit
and bind. Doing so allows treating security labels as effects
of computation and confines the task of dependency tracking
to just a few rules while keeping the rest of the language
effect free (or pure). The proof theory of DCC is proved sound
against noninterference by building a categorical model for its
types. This approach of enforcing information flow properties
has become synonymous with the coarse-grained style of IFC,
as labels are only associated with the monadic type and not
with others. This is in contrast with the fine-grained style of
information flow tracking which assigns and tracks label with
every type [12] in the language.

The core idea of DCC was later generalised in another
type-theoretic framework called CG [5], [6] (short for Coarse
Grained) to languages with other channels of information
leaks, in particular dynamic memory allocation and mutable
heaps. CG uses two different graded modalities one for as-
sociating labels and the other for tracking information across
memory locations. It was also shown in [5], [6] that such
graded modalities can be semantically interpreted using a
possible-worlds model (inherent to many modal logics) built
using a logical relations framework, which was used to prove
the soundness of CG against noninterference. The type theory
CG is quite expressive and in fact is equally expressive to the
fine-grained style of information tracking.

B. Delimited release

Delimited release [9] is a classical approach of controlling
“what” information is allowed to be leaked. The core idea of
delimited release is to only allow information to be leaked via
specific terms called an escape hatches. These escape hatches
are specified using a declassify construct which takes two
arguments: an expression e which is to be declassified and
a security label ℓ to which this information is allowed to be
declassified.

Definition 1 (Delimited Release [9]).
Suppose the command c contains within it exactly n declassify

expressions, declassify(e1, ℓ1), . . . , declassify(en, ℓn). Com-
mand c is secure if for all security levels ℓ we have ∀H1, H2.
(H1 ≈ H2 & ∀i ∈ {i|ℓi ⊑ ℓ}.(H1, ei) ≈ (H2, ei))
=⇒
(H1, c) ≈ (H2, c)

The formal definition of delimited release from [9] is
described in Definition 1 above. It is as an embellishment
of termination-insensitive noninterference with some precondi-
tions on the information intended to be declassified. Basically,
it says that if the escape hatches are semantically indistin-
guishable by an adversary then so are the commands using
those escape hatches. Formally it is stated as follows, given
two equivalent heaps i.e. heaps which can only differ in their
secret content, but must have the same public data (denoted by
H1 ≈ H2), a command c is secure iff the following holds: if
none of the escape hatches (i.e. all the declassify expressions)
in the command c can distinguish the two equivalent heaps
(up to termination), then the command c should not be
able to distinguish (again up to termination) between those
equivalent heaps either. The termination insensitivity is baked
into the indistinguishability of the commands configuration
(H1, c) ≈ (H2, c) (and similarly for expressions).

C. Relaxed Noninterference

Another approach to “what” declassification is the one by
Li and Zdancewic, it called relaxed noninterference [10]. The
core idea of relaxed noninterference is to allow only that
information to be released that is allowed by some given
policies. The policies are specified as sets of lambda functions,
which are treated as labels and are used as annotations on
types (unlike delimited release where policies only appear
at the term level). For example, a secret number n can be
assigned a policy λx.x == c, which when applied to n will
only allow it to be compared to a constant c and would return
a boolean result of that comparison. The soundness criterion
for relaxed noninterference approach is not a hyperproperty
demanding indistinguishability, but instead it is a syntactic
slicing criterion which allows programs to be factored into
two parts: one that syntactically contain no secrets, and the
other that only has application of declassification policies on
secrets. The formalisation of their soundness criterion is not
relevant here as we do not use that criterion in this paper, but
it can be found in [10].

III. DECC: THE LANGUAGE

In this section we describe the statics and dynamics of
DeCC.

A. Statics

As usual in many information flow type systems, in DeCC
we use security labels (denoted by ℓ) drawn from an arbitrary
security lattice (L,⊑). The least and top elements of the lattice
are denoted by ⊥ and ⊤ respectively. For ease of exposition
we only talk about confidentiality lattice here, but nothing in
our development is specific to confidentiality lattice only. In
fact, our HOL mechanisation [13] is completely parametric in

Types τ ::= N | τ1 → τ2 | τ1 × τ2 | τ1 + τ1 | ♢ℓτ | □ϕ,ττ

Expressions e, ϕ ::= v | x | e1 ⊙ e2 | e1 e2 | (e, e) | fst e | snd e | inl e | inr e | case e of x.e; y.e |
dec e e | coret e | cojoin e | split e

Values v ::= N | λx.e | (v , v) | inl e | inr e | ret e | bind e1 = x in e2 | □ e

Fig. 1. Syntax of types and terms

the kind of labels used, and only requires some abstract lattice
axioms. As a result, the whole development will also work for
any security lattice including an integrity lattice or a product
lattice of confidentiality and integrity.

Types: DeCC’s type language (Fig. 1) consists of a base
type which we choose as the type of natural numbers N, a
function type (τ1 → τ2), products (τ1×τ2) and sums (τ1+τ2).
In addition, for the purpose of security, we add two modal
types to DeCC’s type language: 1) a graded monad ♢ℓτ (which
we refer to as the classification or the diamond modality) for
classification of information, that we inherit from DCC [4],
and 2) a new graded modality □ϕ,τ ′τ (which we refer to as
the declassification or the box modality) which we introduce
for the purpose of incorporating information declassification.

The classification modality ♢ℓτ describes the type of a term
of type τ with a confidentiality label ℓ associated with it. The
label ℓ can be thought of as a upper bound on the level of
secrets that have been inspected in the past to obtain a value
of type ♢ℓτ . The declassification modality □ϕ,τ ′τ on the other
hand describes a term of type τ that can be inspected by a
policy ϕ of type τ → τ ′ in the future producing a result of
type τ ′ after declassification2.

Note that our declassification modality (□ϕ,τ ′τ) is defined
for a general τ and τ ′ and not just for monadic types. Declassi-
fication just falls out as a special case here by specialising the
τ and τ ′ to monadic types ♢ℓ− to ♢ℓ′− respectively, where
ℓ′ ⊏ ℓ. The more general version comes in handy for proving
meta-theoretic properties as defined later in Section V. Also,
we believe this generality (of controlling the future use of
a term of type τ via ϕ) could have other applications even
outside of security.

Terms: The syntax of DeCC’s terms is described in
Fig. 1. We use ⊙ to denote an abstract binary operation on
natural numbers which we instantiate with specific operators
for the sake of examples. Here we only focus on the terms per-
taining to the classification and the declassification modalities,
as the rest are standard.

For the classification modality, we inherit the DCC’s ret and
bind operations. The constructor ret e allows for insertion of
a term e into the classification monad. The bind x = e1 in e2
operation on the other hand defines how to sequentially com-
pose two labelled terms, where e2 can refer to the value of e1

2For brevity we may omit the return type τ ′ wherever it is not required or
is implicit from the context, and just write the declassification type as □ϕτ .

via x. The multiplication or the join operation can be defined
using bind in a standard way join ≜ λx.bind y = x in x.

For the declassification modality, the term □e defines a
value of the box type. Boxed values can be provided from
the context, or can be created using an inject constructor.
The dec ϕ e is the only construct in the language which
allows for declassification of information, it is meant to be
read as declassify e using a policy ϕ3. Dual to the classification
modality we introduce coret and cojoin as the co-unit and co-
multiplication constructs. Additionally, we also have a gener-
alisation of cojoin called the split with the same semantics but
different proof theory, as we explain in later sections.

B. Dynamics

We define the semantics of DeCC using two evaluation
relations, a pure (⇓) and a forcing (⇓f) evaluation. The pure
reduction defines the evaluation of the effect-free or pure
terms while the forcing reduction defines the evaluation of the
monadic ones. This kind of a separation is fairly standard and
has been used in the literature for many Haskell-like languages
with a modal type system [5], [14], [15].

The pure reduction is defined using a standard call-by-
value semantics. We only describe selected rules pertaining
to the declassification modality here (Fig. 2), all the other
pure evaluation rules are standard and are included in our
HOL mechanisation [13]. E-coret allows for extracting out
the boxed expression without the application of the policy, if e
evaluates to □e′ and e′ evaluates to v then coret e evaluates to
v. E-cojoin does the reverse, if e evaluates to □e′ then cojoin e
adds another box on top resulting in □□e′. The semantics of
split is identical to cojoin, they only differ in their typing rules
and their meta theory. E-dec defines the semantics of the dec
construct, if e evaluates to □e′ then dec returns the same value
as the value returned by the application of the policy ϕ on e′.

The monadic terms ret and bind are treated as values in
the pure semantics and their evaluation is defined using the
forcing relation ⇓f , also described in Fig. 2. E-ret defines the
semantics of the ret construct, if e evaluates to v under the
pure semantics, then ret e evaluates to the same value v under
the forcing semantics. Finally, the E-bind rule describes the
semantics of composing two monadic terms, e2 after e1, via
the bind construct.

3Our HOL formalisation [13] introduces dec in the let style, which is just
a sugared representation of let x = dec ϕ e in x. Here we present the
desugared version, dec ϕ e, for brevity.

Pure evaluation judgement: e ⇓ v Forcing evaluation judgement: e ⇓f v

e ⇓ □ e′ e′ ⇓ v

coret e ⇓ v
E-coret

e ⇓ □ e′

cojoin e ⇓ □ □ e′
E-cojoin

e ⇓ □ e′

split e ⇓ □ □ e′
E-split

e ⇓ □ e′ ϕ e′ ⇓ v

dec ϕ e ⇓ v
E-dec

e ⇓ v

ret e ⇓f v
E-ret

e1 ⇓ v1 v1 ⇓f v ′
1 e2[v

′
1/x] ⇓ v2 v2 ⇓f v ′

2

bind x = e1 in e2 ⇓f v ′
2

E-bind

Fig. 2. Pure and Forcing evaluation (selected) rules

IV. DECC: THE TYPE THEORY

In this section we describe the type-theoretical aspects of
DeCC. We begin by describing the typing rules. After that we
build a logical relation-based semantic model of DeCC’s types
and use that to prove the soundness of our type system.

A. Type system

The typing judgement of DeCC is given by ∆;Φ; Γ ⊢ e : τ .
Here, Γ is a context mapping free variables of e to their
types, and ∆, Φ are the two policy contexts containing pairs
of closed policies (function combinators) along with their
types. The context ∆ is the context of policies which are
assumed to be semantically secure, while the policies in the
context Φ are only assumed to be type safe (under a non
IFC type system, which we will describe later). We make this
distinction to clearly disentangle two kinds of declassification
subsumed in DeCC: releasing information via policies which
are noninterfering or semantically secure (such policies reside
in ∆), and releasing information via policies which might
be interfering and overrides the default policies as given by
the labelling (such policies reside in Φ). This distinction also
allows us to define operations like inject and split which
enables examining meta-theoretical properties of DeCC like
distributive laws (Section V-B), and encode scenarios like
partial and conditional declassification (Section VI-D).

Typing rules: We describe selected typing rules for the
constructs relevant to the classification and declassification
modalities in Fig 3. The typing rules for the non-modal types
are totally standard so we do not explain them here, but can
be found in the accompanying HOL artefacts [13].

We first describe the typing rules for the classification
monad. T-ret describes the typing for the unit/ret of the
monad, it allows for injecting a term of type τ into the
monad by assigning the least confidentiality label ⊥ to it. T-
bind defines the typing for the composition of two monadic
terms e and e′. The rule makes sure that the final label ℓ′

of the continuation term e′ is at least equal to the label
ℓ of the term e inspected before (in the past). This label
check, ℓ ⊑ ℓ′4, is crucial to prevent information leaks. The

4Note that our typing for bind differs from that of DCC. DCC ensures that
the type of the continuation term e′ is protected at level ℓ using a separate
protection relation which subsumes our check ℓ ⊑ ℓ′. Generalisation to the
full protection relation of DCC is an orthogonal expressivity issue which we
leave for future extension.

multiplication/join as mentioned earlier is definable within the
calculus, join ≜ λx.bind y = x in x, and it can be given a
type, join : ♢ℓ1(♢ℓ2τ) → ♢ℓ1⊔ℓ2τ .

We now describe the typing rules for the declassification
modality. T-coret describes the typing of the coret construct, it
allows for extraction of a term from under the box. Doing so is
sound because declassification is only possible for terms inside
the box. Once a term is extracted out it is basically subject
to the standard DCC typing, which does not allow declas-
sification. T-cojoin allows wrapping an existing boxed value
into another box which can only be inspected by an identity
policy, and hence cannot be further declassified. Although split
and cojoin behave identically in the semantics, their typing
rules are very different. T-split describes the typing of the
split construct. If the input policy ϕ is a composition of two
policies, ϕ2 after ϕ1, then it can be broken up over two nested
boxes with ϕ1 and ϕ′ (≜ λx.let y = dec ϕ1 x in ϕ2 y)
as their policies. The policy ϕ′ uses the dec construct to
first declassify using the ϕ1 and then its results using ϕ2,
thereby simulating the original composition. For this rule to
be sound, we require the inner policy ϕ1 to be semantically
secure (on all inputs), and hence must come from ∆. But
the constraints required for the outer policy are weaker. In
particular, ϕ2 is only required to be type safe (in a standard
non-IFC sense), i.e. ϕ2 should be a member of Φ, but it can be
interfering and can declassify information. This is because the
given policy ϕ is only expected to provide indistinguishability
guarantees about the final results of the application of ϕ on
indistinguishable terms of type τ in the box, but not about
the intermediate ones which ϕ1 can produce. So, to be able
to prove indistinguishability guarantees in a compositional
manner we need this additional assumption about ϕ1 being in
∆. Also, intuitively, one can use a coret over a split construct
to get rid of the outer box. So, if the inner policy is not
semantically secure, we cannot guarantee indistinguishability.
T-inject rule allows creation of a boxed term of type □ϕτ
using a well typed term of type τ and a semantically secure
policy ϕ : τ → τ ′ from ∆. Again ϕ is required to be in ∆
for similar reasons as explained in the T-split rule. Finally, T-
dec describes the typing of the dec construct. Note that, this
rule is sound even under a weaker assumption on the policy
ϕ being just type safe (and not necessarily secure). This is
because indistinguishability of boxed inputs of type □ϕ,τ ′τ

Typing judgement: ∆;Φ; Γ ⊢ e : τ

∆;Φ; Γ ⊢ e : τ

∆;Φ; Γ ⊢ ret e : ♢⊥τ
T-ret

∆;Φ; Γ ⊢ e : ♢ℓτ ∆;Φ; Γ, x : τ ⊢ e : ♢ℓ′τ
′ ℓ ⊑ ℓ′

∆;Φ; Γ ⊢ bind x = e in e′ : ♢ℓ′τ
′ T-bind

∆;Φ; Γ ⊢ e : □ϕτ

∆;Φ; Γ ⊢ coret e : τ
T-coret

∆;Φ; Γ ⊢ e : □ϕ,τ ′τ

∆;Φ; Γ ⊢ cojoin e : □id□ϕ,τ ′τ
T-cojoin

∆;Φ; Γ ⊢ e : □ϕ,τ ′τ Φ(ϕ) = τ → τ ′ ∨∆(ϕ) = τ → τ ′

∆;Φ; Γ ⊢ dec ϕ e : τ ′
T-dec

∆;Φ; Γ ⊢ e : τ ∆(ϕ) = τ → τ ′

∆;Φ; Γ ⊢ □e : □ϕ,τ ′τ
T-inject

∆;Φ; Γ ⊢ e : □ϕ2·ϕ1,τ ′τ

∆(ϕ1) = τ → τ ′′ Φ(ϕ2) = τ ′′ → τ ′ ∨∆(ϕ2) = τ ′′ → τ ′ ϕ′ ≜ λx.let y = dec ϕ1 x in ϕ2 y

∆;Φ; Γ ⊢ split e : □ϕ′□ϕ1
τ

T-split

Fig. 3. DeCC’s type system (selected rules)

will subsume indistinguishability of values of type τ ′ that
gets released. This is formalised in the binary interpretation
of the declassification modality which we describe in the next
subsection IV-B.

Subtyping: Finally, DeCC also supports subtyping. We
write the subtyping judgement as ∆;Φ ⊢ τ <: τ ′, stating that
τ is a subtype of τ ′ under the two policy contexts ∆ and Φ.
We only describe the subtyping rules for the classification and
the declassification modalities as the rest are totally standard
and are included in our mechanised development.

∆;Φ ⊢ τ <: τ ′ ℓ ⊑ ℓ′

∆;Φ ⊢ ♢ℓτ <: ♢ℓ′τ
′ sub-classify

The subtyping for the classification modality (sub-classify)
allows raising the level of the associated label, and is covariant
in the underlying type. In the current setup, the declassification
modality is invariant in all its components, as described in the
sub-declassify rule.

∆(ϕ) = τ → τ ′ ∨ Φ(ϕ) = τ → τ ′

∆;Φ ⊢ □ϕ,τ ′τ <: □ϕ,τ ′τ
sub-declassify

We can allow for a more liberal subtyping for the declassifi-
cation modality, but doing so will require additional changes in
the typing rules, like T-dec, because otherwise after subtyping
the type lookup in the policy context can fail.

B. Semantic model of types

We describe the semantic model of DeCC’s types using two
kinds of relations, a binary and a unary one. Our model is
inspired from the model of CG [5], [6], which is designed for
noninterference but not declassification.

At a high level, our binary relations capture the security
invariants required to prove indistinguishability of two terms
in a compositional manner. Unary relations on the other hand,
are used to ensure security of terms that are influenced by

secrets, as indistinguishability cannot be proved for such terms.
They also provide a way to assert semantic type safety, which
we use for policies in the context. Type safety via logical
relations is not a requirement, in fact we have built a syntactic
type system (essentially a relaxation of the type system we
presented earlier) for this purpose. But we avoid getting into
those aspects until later (section VII-A).

Unary interpretation: Unary interpretation (described in
Fig. 4) of a type defines the set of terms which are semantically
in the interpretation of that type. This is defined using two
mutually inductive relations, a unary value relation denoted
by ⌊·⌋V and a unary expression relation denoted by ⌊·⌋E . The
relations are well founded by induction on types.

The value relation ⌊τ⌋V defines the set of values which
are in the interpretation of a type τ . For the natural number
type N it says all syntactic inhabitants of N (written JNK)
are in the interpretation. For the product type, (v1, v2) are in
the interpretation of τ1 × τ2 iff v1 is in the interpretation of
τ1 and v2 is in the interpretation of τ2. The interpretation of
the sum type τ1 + τ2 is defined as a disjoint union of the
interpretation of τ1 and τ2. Next we define the interpretation
for the function type, λx.e is in the interpretation of τ1 → τ2
iff for all values v in the interpretation of the input type τ1,
the body of the function with the v substituted for x, e[v/x],
is in the expression interpretation (defined later) of the output
type τ2. The case for the monadic type states that v is in the
interpretation at ♢ℓτ if v is a monadic value (i.e. a ret or
a bind term), and if v can be forced to a value v′ then the
resulting value v′ must be interpretable at τ using the unary
value relation. Notice the label ℓ plays no role whatsoever
in the unary interpretation, they are only relevant for security
and hence are only relevant in the binary logical relation. The
case for the box type states that a boxed value □e is in the
interpretation of □ϕ,τ ′τ if e is in the expression interpretation
at type τ and the application of policy ϕ on e is in the
interpretation at type τ ′. The second clause basically ensures

⌊N⌋V ≜ {n | n ∈ JNK}
⌊τ1 × τ2⌋V ≜ {(v1, v2) | v1 ∈ ⌊τ1⌋V ∧ v2 ∈ ⌊τ2⌋V }
⌊τ1 + τ2⌋V ≜ {inl v | v ∈ ⌊τ1⌋V } ∪ {inr v | v ∈ ⌊τ2⌋V }
⌊τ1 → τ2⌋V ≜ {λx.e | ∀v .v ∈ ⌊τ1⌋V =⇒ e[v/x] ∈ ⌊τ2⌋E}
⌊♢ℓτ⌋V ≜ {v | ismonadval(v) ∧ v ⇓f v′ =⇒ v′ ∈ ⌊τ⌋V }
⌊□ϕ,τ ′τ⌋V ≜ {□ e | e ∈ ⌊τ⌋E ∧ ϕ e ∈ ⌊τ ′⌋E}

⌊τ⌋E ≜ {e | ∀v.e ⇓ v =⇒ v ∈ ⌊τ⌋V }

⌊Γ⌋V ≜ {δ | dom(Γ) ⊆ dom(δ) ∧ ∀x ∈ dom(Γ).δ(x) ∈ ⌊Γ(x)⌋V }

Fig. 4. Unary interpretation

that the result obtained after application of the policy is also
semantically well-typed, it is required for the soundness of our
type system.

The expression relation ⌊τ⌋E is defined by a set of expres-
sions which are in the interpretation of the type τ . It basically
says that e is in the interpretation of τ iff the value v obtained
using the pure evaluation of e is in the value interpretation at
the same type τ .

Finally, in Fig. 4 we also define a unary substitution
relation ⌊Γ⌋V to define semantically well-typed substitutions
(represented as a map δ from variables to values) for free
variables in Γ. The definition is self explanatory and is defined
using the unary value relation.

Binary interpretation: The binary interpretation (de-
scribed in Fig. 5) defines the conditions required to securely
relate (up to indistinguishability wrt an adversary A) two terms
of DeCC. As a result binary interpretation is a set of pair of
terms (and not a single term like in the unary case). However,
like the unary interpretation, the binary interpretation is also
defined using two mutually inductive relations, a value relation
⌈·⌉AV and an expression relation ⌈·⌉AE . But both of these
relations are parameterised by an attacker level A, which
is a level in the security lattice. The invariants captured by
the binary relations are sufficient to establish a termination-
insensitive and indistinguishability-based semantic security
criterion (formally defined in section IV-C later).

Like before, we begin with a description of the value
relation. The binary value relation ⌈τ⌉AV defines the set of
pair of values which are in the interpretation of a type τ . For
the natural number type N it is defined as the reflexive closure
over inhabitants of type N (written JNK). The definition for the
products is defined by induction on the components, (v1, v2)
is related to (v ′

1, v
′
2) via ⌈τ1 × τ2⌉AV iff (v1, v ′

1) are related via
⌈τ1⌉AV and (v2, v

′
2) are related via ⌈τ2⌉AV . The interpretation

for the sum type τ1 + τ2 is similar to the unary case (defined
as the disjoint union of the interpretation at τ1 and τ2), but is
generalised over a pair of values. The case for the function type
is somewhat interesting, it states that two lambda expressions
(λx.e1, λx.e2) are related at the function type τ1 → τ2 iff
given a pair of related input values (v1, v2) at the input type
τ1, we get a pair of related expressions after substitutions
(e1[v1/x], e2[v2/x]) at the output type τ2. Additionally, we

also require the two lambda expressions to be in the unary
value relations at the function type. This is required for
technical reasons (Lemma 2). An explicit inclusion of a similar
unary condition is not required at the types discussed before, as
those can be obtained directly as an induction hypothesis when
inducting on types to prove the following lemma (Lemma 2)
relating the unary and binary value relations. A similar prop-
erty also holds for the expression relations as well, but we
elide those details here.

Lemma 2 (Binary value relation subsumes unary value rela-
tion).
(v1, v2) ∈ ⌈τ⌉AV =⇒ v1 ∈ ⌊τ⌋V ∧ v2 ∈ ⌊τ⌋V

Next we describe the case for the monadic type ♢ℓτ . It
states that if two monadic values v1 and v2 can be reduced
under forcing semantics to v′1 and v′2, then v′1 and v′2 must be
related via the binary value relation at type τ for an adversary
who is above ℓ. Otherwise, i.e. when an adversary is not above
ℓ, then v′1 and v′2 are only required to be in the unary relation
at type τ , as they are secret values and can differ in the two
executions. Just like in the case for function type, here also
we desire v1 and v2 to be in the unary relation at the monadic
type. Doing so also provides a semantic justification for the
label promotion allowed by the sub-classify rule. Finally we
describe the case for the box type. It states that □e1 and □e2
are related at the □ϕ,τ ′τ if e1 and e2 are related at τ and
ϕ e1 and ϕ e2 are related at τ ′. Interestingly, adding unary
clauses for □e1 and □e2 (like in the case of function and
the monadic types) are problematic for the soundness of split
construct. This is because doing so will require us to have
the expression under the box to be evaluated, which is not
allowed in our semantics. To circumvent this issue, and still
obtain the guarantees of Lemma 2, we add the unary clauses
to the binary expression relation (described next).

The binary expression relation ⌈τ⌉AE defines the conditions
under which a pair of expressions are related at type τ . It
states if (e1, e2) are in the interpretation of τ if the value
v1 and v2 obtained using pure evaluation are related at the
value interpretation of the same type τ . We also have the two
unary clauses for the expressions e1 and e2, for the proof of
Lemma 2 at the box type, as mentioned above.

Finally, like in the unary case, Fig. 5 also defines a binary

⌈N⌉AV ≜ {(n, n) | n ∈ JNK}
⌈τ1 × τ2⌉AV ≜ {((v1, v2), (v ′

1, v
′
2)) | (v1, v ′

1) ∈ ⌈τ1⌉AV ∧ (v2, v
′
2) ∈ ⌈τ2⌉AV }

⌈τ1 + τ2⌉AV ≜ {(inl v , inl v ′) | (v , v ′) ∈ ⌈τ1⌉AV }∪
{(inr v , inr v ′) | (v , v ′) ∈ ⌈τ2⌉AV }

⌈τ1 → τ2⌉AV ≜ {(λx.e1, λx.e2) |(
∀v1, v2. (v1, v2) ∈ ⌈τ1⌉AV =⇒ (e1[v1/x], e2[v2/x]) ∈ ⌈τ2⌉AE

)
∧

λx.e1 ∈ ⌊τ1 → τ2⌋V ∧ λx.e2 ∈ ⌊τ1 → τ2⌋V }
⌈♢ℓτ⌉AV ≜ {(v1, v2) | ismonadval(v1) ∧ ismonadval(v2)∧(

∀v′1, v′2.v1 ⇓f v′1 ∧ v2 ⇓f v′2 =⇒{
(v′1, v

′
2) ∈ ⌈τ⌉AV ℓ ⊑ A

v′1 ∈ ⌊τ⌋V ∧ v′2 ∈ ⌊τ⌋V otherwise)
∧ v1 ∈ ⌊τ⌋V ∧ v2 ∈ ⌊τ⌋V }

⌈□ϕ,τ ′τ⌉AV ≜ {(□ e1,□ e2) | (e1, e2) ∈ ⌈τ⌉AE ∧ (ϕ e1, ϕ e2) ∈ ⌈τ ′⌉AE}

⌈τ⌉AE ≜ {(e1, e2) | (∀v1, v2.e1 ⇓ v1 ∧ e2 ⇓ v2 =⇒ (v1, v2) ∈ ⌈τ⌉AV)∧
e1 ∈ ⌊τ⌋E ∧ e2 ∈ ⌊τ⌋E}

⌈Γ⌉AV ≜ {γ | dom(Γ) ⊆ dom(γ) ∧ ∀x ∈ dom(Γ).(π1(γ(x)), π2(γ(x))) ∈ ⌈Γ(x)⌉AV }

Fig. 5. Binary interpretation

substitution relation ⌈Γ⌉AV to define a pair of semantically well
typed substitutions for free variables in Γ. It says γ (a map
from variables in Γ to a pair of values) is in ⌈Γ⌉AV iff the
conditions specified in the definition are met. The conditions
are similar to those of the unary substitution relation but
is defined over pairs of values (represented using projection
functions π1(·) and π2(·)) and hence is defined using the
binary value relation.

C. Relaxed semantic declassification and soundness

Having described the logical relations we now move to
defining our security criterion, which we call as Relaxed
Semantic Declassification (RSD for short) and show that our
binary logical relation provides that guarantee for well-typed
programs.

We begin by defining well-formedness and semantic as-
sumptions for the policy contexts. The assumptions for the
policies in the context ∆ are defined wrt an adversary A
(Definition 3), it basically requires that for all policy and type
pairs (ϕ, τ) in ∆ three conditions hold: 1) the policy ϕ is
a closed term, we do not want the declassification policies
to depend on free variables 2) τ is a function type of the
form τ1 → τ2 for some τ1 and τ2 and 3) the policy ϕ
is related to itself via the binary value relation at the type
τ1 → τ2, i.e. (ϕ, ϕ) ∈ ⌈τ1 → τ2⌉AV . Intuitively, the conditions
formally specify that ∆ only contains closed declassification
functions which are semantically secure on all inputs. We also
get semantic well typing of all the policies in ∆, as a corollary
of Lemma 2 described earlier.

Definition 3 (Policy assumptions for ∆).
PA ∆ A ≜ ∀(ϕ, τ) ∈ dom(∆). closed ϕ ∧
∃τ1, τ2. τ = τ1 → τ2 ∧ (ϕ, ϕ) ∈ ⌈τ1 → τ2⌉AV

We also define a similar well-formedness and semantic
conditions for Φ (Definition 4) but it only demands inclusion
of the policy in the unary value relation for reasons of
type safety (remember the policies in Φ can be interfering).
The semantic typing via our unary logical relation is only a
temporary requirement to avoid getting into trivial type safety
issues and ease of presentation, we will lift this requirement
and derive a simple type system for asserting the type safety
of policies later in section VII-A.

Definition 4 (Policy assumptions for Φ).
PA Φ ≜ ∀(ϕ, τ) ∈ dom(Φ). closed ϕ ∧
∃τ1, τ2. τ = τ1 → τ2 ∧ ϕ ∈ ⌊τ1 → τ2⌋V

We now have all the ingredients to define RSD
(Definition 5). RSD defines a termination-insensitive and
indistinguishability-based semantic security criterion for an
open term e of type τ with free variables in Γ where e can
potentially declassify information using policies from either of
the policy contexts, ∆ or Φ. The guarantee that RSD provides
is that, for any adversary A if the two policy contexts satisfy
the assumptions as defined in Definitions 3 and 4, then pro-
viding indistinguishable substitutions from γ for free variables
in the two executions will lead to indistinguishable outputs
from e closed with those substitutions (the substitutions for
the two executions are denoted using γ ↓1 and γ ↓2). The
indistinguishability is formalised in the binary logical relations
(as defined earlier).

Definition 5 (RSD).
RSD(e, τ,Γ,∆,Φ) ≜ ∀A. PA ∆ A ∧ PA Φ =⇒
∀γ ∈ ⌈Γ⌉AV . (e γ ↓1, e γ ↓2) ∈ ⌈τ⌉AE

Next we show that programs that are well typed under
DeCC’s typing rules satisfy RSD. This result is stated as
the fundamental theorem of our binary logical relation, Theo-

rem 6. We prove this theorem by induction on the typing rules,
the theorem makes use of a corresponding unary version of the
fundamental theorem (Theorem 7) to complete the proof where
binary and unary logical relations interact like at the monadic
and function types, and also in the expression relation. The
unary fundamental theorem also extends the semantic type-
safety guarantee to all the well typed programs (in addition
to the policies which enjoy semantic type safety by virtue of
directly being in the unary relation).

Theorem 6 (Binary fundamental theorem).
∆;Φ; Γ ⊢ e : τ =⇒ RSD(e, τ,Γ,∆,Φ)

Theorem 7 (Unary fundamental theorem).
∆;Φ; Γ ⊢ e : τ ∧ δ ∈ ⌊Γ⌋V ∧ PA ∆ A ∧ PA Φ
=⇒ e δ ∈ ⌊τ⌋E

One more ingredient required to finish the proofs of both
Theorem 6 and 7, is proving the soundness of our subtyping
relation. We prove that our subtyping relation is sound wrt
both the unary and binary value relations (Lemma 8). Similar
results are also obtained for the expression relations, but we
elide those details here.

Lemma 8 (Unary and binary subtyping lemmas).
∀∆,Φ,A.

PA ∆ A ∧ PA Φ ∧ ∆;Φ ⊢ τ <: τ ′ =⇒
1) v ∈ ⌊τ⌋V =⇒ v ∈ ⌊τ ′⌋V
2) (v1, v2) ∈ ⌊τ⌋V =⇒ (v1, v2) ∈ ⌊τ ′⌋V
Finally, one can immediately derive the following top-level

soundness result (Theorem 9) as a corollary of the binary
fundamental theorem. The theorem states that given policy
contexts ∆ and Φ satisfying the policy assumptions stated
earlier, and given a declassification policy ϕ : ♢⊤N → ♢⊥N
from either of the policy contexts, the following holds: declas-
sification of secret boxed values of type □ϕ♢⊤N in the two
runs would produce indistinguishable results.

Theorem 9 (Soundness).
∀∆,Φ, ϕ.

PA ∆ A and PA Φ,(
ϕ : ♢⊤N → ♢⊥N ∈ ∆ or
ϕ : ♢⊤N → ♢⊥N ∈ Φ

)
If

∆;Φ;x : □ϕ♢⊤N ⊢ dec ϕ x : ♢⊥N
∆;Φ; . ⊢ □v1 : □ϕ ♢⊤N
∆;Φ; . ⊢ □v2 : □ϕ ♢⊤N
(dec ϕ x)[□v1/x] ⇓ ⇓f v ′

1

(dec ϕ x)[□v2/x] ⇓ ⇓f v ′
2

then
v ′
1 = v ′

2

V. META THEORY

In this section we explore the meta-theoretical aspects of
the two modalities of DeCC. While part of this investigation
is purely of theoretical interest, we also describe some of their
practical implications pertaining to information flow.

A. Box is a comonad

We begin by exploring the following question: if the
classification modality has a monadic nature [4], does the
declassification modality exhibit some comonadic aspects? It
turns out the general ϕ graded box does not form a full
comonad, but its specialisation the id graded (or equivalently
the ungraded) box does.

We begin by adding a specific version of fmap for our
declassification modality to the calculus. Our fmap is a gen-
eralisation of the standard fmap, it takes three arguments: A
mapping function f and an expression to be mapped over e as
usual. But additionally, it also takes a new function ϕ as a third
argument. The function ϕ specifies a declassification policy
that can be used to inspect the boxed result after mapping
f over e. Typing of fmap (T-fmap rule) requires e to be an
expression of the type □ϕ1τ1 and f to be a mapping function
of type τ1 → τ2. However, mapping f over e can only give
us a result of type □ϕ1

τ2. This is a problem as ϕ1 expects
its input to be of type τ1, as a result we have to change the
policy on the result. This is why we choose ϕ, a universally
secure semantic policy of the type τ2 → τ3 from ∆. Picking
a policy from Φ will not be sound as policies in Φ don’t have
the required security invariants on them. We have proved the
soundness of this rule by proving that it satisfies the binary
and unary fundamental theorems (Theorems 6 and 7) as stated
before.

∆;Φ; Γ ⊢ e : □ϕ1
τ1

∆;Φ; Γ ⊢ f : τ1 → τ2 ∆(ϕ) = τ2 → τ3

∆;Φ; Γ ⊢ fmap f e ϕ : □ϕτ2
T-fmap

The evaluation rule, E-fmap, describes the semantics of our
fmap. Mapping over a boxed value is a pure operation and
hence is evaluated using the pure reduction. The rule says, if
e evaluates purely to a boxed value □ e′ and the application
of f on e′ results in v, then the final result we obtain is □ v.
As is clear from the rule, the policy ϕ is only relevant in types
and does not play any role in the semantics.

e ⇓ □ e′ f e′ ⇓ v

fmap f e ϕ ⇓ □ v
E-fmap

Next we derive three properties of □ϕτ (Fig. 6) wrt
our unary expression relation, and use those to show the
comonadic nature of □idτ . The first property P1 says that
for any ϕ and τ , the sequential composition of coret after
cojoin is in ⌊□ϕτ1 → □ϕτ1⌋E iff the identity function is
in ⌊□ϕτ1 → □ϕτ1⌋E . The second property P2 shows a
similar result but for a term involving fmap. In particular,
it says that λx.fmap coret (cojoin x) ϕ is an inhabitant of
⌊□ϕτ → □ϕτ⌋E iff the identity is its inhabitant too. Finally,
the third property P3 is a result relating the membership of
λx.cojoin(cojoin x) and λx.fmap cojoin (cojoin x) id in
⌊□ϕτ → (□id(□id□ϕτ))⌋E .

Since all these properties are proved for a general ϕ they
can be also be instantiated for id, resulting in proving the three

comonad laws for □idτ . At this point an avid reader might
ask: Does the graded version of the box modality □ϕτ also
forms a comonad? The answer to this question is unfortunately
negative. While properties P1 and P2 together correspond to
counitality axioms for ϕ graded box, but the property P3
does not imply its coassociativity axiom [16]. This is because
property P3 only holds for the type □ϕτ → (□id(□id□ϕτ)),
i.e. with id (and not ϕ) on the outer two boxes of the return
type. This is, however, suggestive of some richer structure
that warrants further investigation into the categorical model
of DeCC. This is an interesting direction of future work. The
existing efforts on the categorical interpretation of information
flow properties (like [4], [17], [18]) have not considered
properties like relaxed semantic declassification at all.

B. Interaction between the modalities

In multi-modal type theories (like DeCC) often we are inter-
ested in studying interactions between the different modalities.
In DeCC we study such interactions between the classification
and the declassification modalities via distributive laws [19],
[20] described as coercions between ♢ℓ(□ϕτ) and □ϕ′(♢ℓτ)
for some relation between ϕ and ϕ′. Such laws are not only
relevant meta theoretically [19], [20], but they also provide a
modal justification for contextual declassification and reclas-
sification, as we describe next.

First we describe a coercion from ♢ℓ(□ϕA) to □ϕ′(♢ℓA).
We begin by motivating this coercion from the perspective
of information flow. Imagine a principal ℓ who creates a
declassifiable secret of type □ϕ(♢ℓτ) (where ϕ is the declas-
sification policy of type ♢ℓτ → ♢ℓ′τ

′ and ℓ′ ⊏ ℓ). However,
since a term of this box type is created by the principal ℓ,
the whole term must have a type with a label ℓ on it, i.e.
♢ℓ(□ϕ(♢ℓτ)). The outer most label ℓ denotes the context
label (of the principal) in which a term of boxed type was
created. Note that, in DeCC we can only extract out a term
of label ℓ or higher (but not ℓ′) from a term of this type,
despite trying to use the intended declassification policy via
the dec construct. For instance, if e is term of the given type
♢ℓ(□ϕ(♢ℓτ)), we can try to attempt a declassification using
bind x = e in (dec ϕ x). But this bind expression can only
be given a type with a label ℓ or higher (because of how
the typing of bind works), but not ℓ′ as was intended upon
declassification . However, if we have a way to distribute the
diamond over the box and obtain a coercion (we call this
coercion dist, short for distributive law) from ♢ℓ(□ϕ(♢ℓτ))
to □ϕ(♢ℓτ)

5, then we will be able to perform the desired
declassification simply as, dec ϕ (dist e). Unfortunately, we
cannot write a function directly in DeCC which can perform
this coercion (from ♢ℓ(□ϕ(♢ℓτ)) to □ϕ(♢ℓτ)) as there is
no way to extract a term out of a monad in general. To
enable this coercion we add dist as a primitive in the language
and prove it sound wrt the semantic model described earlier.

5Technically from the perspective of distributive laws, we require a co-
ercion from ♢ℓ(□ϕ(♢ℓτ)) to □ϕ′ (♢ℓ♢ℓτ), where ϕ′ = λx.ϕ (join x).
Once we have dist in the language, even this coercion can be obtained as
λx.fmap (dist x) ret ϕ′

The typing rule and the semantics of dist are described in
Fig. 7. In summary, the first distributive law provides a way
to enable contextual declassification in DeCC, without which
such a declassification would not be possible. Understanding
generalisation of this law to work with arbitrary types could
be an interesting problem for future work.

The second distributive law i.e. a coercion from □ϕ(♢ℓτ)
(where ϕ is a declassification policy of type ♢ℓτ → ♢ℓ′τ

′ and
ℓ′ ⊑ ℓ) to ♢ℓ(□ϕ′τ) is also possible when ϕ′ ≜ λx.ϕ (ret x) is
defined as the composition of ϕ after ret. In fact, this direction
of coercion is possible for any arbitrary type τ and can be
directly encoded as a well-typed DeCC term. Like the first law,
this law also requires that ϕ be a policy that is universally se-
cure on all inputs, i.e. ϕ must exist in ∆. The function for such
a coercion is as follows, λx.bind y = coret x in ret (inject y).
It takes a term of type □ϕ(♢ℓτ) extracts the term under the box
using coret, then binds it to the variable y of type τ . After that
in the continuation expression of bind, the y is injected back
into a box controlled by the policy ϕ′ and returned as a result
giving back a term of type ♢ℓ(□ϕ′τ) as desired. While the
first law provided a modal basis of contextual declassification,
the second law can be seen as providing a modal justification
of contextual reclassification. This is because while the input
type (of the second coercion) can enable an extraction of
a term protected at label ℓ′ (via declassification using the
dec construct), the result type (of the second coercion) can
only provide us a term protected at label ℓ because of the
outer contextual label on the monad, thereby reclassifying the
declassified output to a higher protection.

VI. EXAMPLES

In this section we describe some examples to demon-
strate the applicability of DeCC. We focus on describing the
declassification aspects using our modal types. Full typing
derivations of all the examples can be found in the appendix
below.

A. Semantically secure program on all inputs

Our first example is a program that is semantically secure
universally (all secret inputs) but cannot be accepted by
a standard information-flow type systems like DCC [4] or
CG [5], [6].

Consider the following function ϕ which takes a secret
number with some label ℓ (̸= ⊥), unpacks the secret using
the bind and multiplies the unpacked natural number by 4,
then computes a remainder by dividing it by 2, and finally
adds 10 to it.

ϕ : ♢ℓN → ♢⊥N
ϕ ≜ λx.bind y = x in ret ((4 ∗ y)%2 + 10)

Irrespective of the secret input that ϕ gets applied to, it will
always produce the number 10 as its output. Consequently, it
is easy to see that (ϕ, ϕ) ∈ ⌈♢ℓN → ♢⊥N⌉AV , for any attacker
A ⊒ ⊥. As a result the function f ≜ λx. dec ϕ x can be type
checked in DeCC under the typing derivation, [(ϕ : ♢ℓN →
♢⊥N)]; ·; · ⊢ f : ♢ℓN → ♢⊥N.

Theorem 10 (P1).
∀ϕ, τ . λx.coret(cojoin x) ∈ ⌊□ϕτ → □ϕτ⌋E ⇐⇒ id ∈ ⌊□ϕτ → □ϕτ⌋E
Theorem 11 (P2).
∀ϕ, τ . λx.fmap coret (cojoin x) ϕ ∈ ⌊□ϕτ → □ϕτ⌋E ⇐⇒ id ∈ ⌊□ϕτ → □ϕτ⌋E
Theorem 12 (P3).
∀ϕ, τ . λx.cojoin(cojoin x) ∈ ⌊□ϕτ → (□id(□id□ϕτ))⌋E ⇐⇒ λx.fmap cojoin (cojoin x) id ∈ ⌊□ϕτ → (□id(□id□ϕτ))⌋E

Fig. 6. Properties of the graded box modality

∆;Φ; Γ ⊢ e : ♢ℓ(□ϕ(♢ℓτ)) ∆(ϕ) = ♢ℓτ → ♢ℓ′τ
′ ℓ′ ⊑ ℓ

∆;Φ; Γ ⊢ dist e : □ϕ(♢ℓτ)
T-dist

e ⇓ ret(□e′)

dist e ⇓ □e′
E-dist

Fig. 7. Typing and evaluation rules for dist

B. Semantically secure program on some inputs

Our next example is a program that is semantically secure
on some inputs (but not universally).

Consider the following function ϕ which takes a secret pair
of numbers (of some label ℓ ̸= ⊥), unpacks the secret using
the bind and returns the addition of its two components.

ϕ : ♢ℓ(N× N) → ♢⊥N
ϕ ≜ λx.bind y = x in ret (fst y + snd y)

Clearly ϕ is not universally secure, but can produce in-
distinguishable result on some inputs like when the inputs
are permuted, for instance, (2, 4) and (4, 2). For such inputs,
we should be able to guarantee indistinguishability of results
obtained on application of ϕ. Technically, this means if we
have a variable x of type □ϕ♢ℓ(N× N) in the context (say Γ),
and a binary substitution γ ∈ ⌈Γ⌉AV , for any attacker A ⊒ ⊥,
then we should be able to allow information to be released via
an expression like e ≜ dec ϕ x : ♢⊥N. The indistinguishability
of the declassified output really comes from the fact that the
substitutions/inputs for x in the two runs (coming from γ) are
in the binary value relation at the type □ϕ♢ℓ(N× N). This
would basically ensure that ϕ is non distinguishing on the
supplied inputs. This is why RSD(e,♢⊥N,Γ,∆,Φ) is satisfied
and declassification via the expression e can be allowed. Here
Φ ≜ [ϕ : ♢ℓ(N× N) → ♢⊥N] and ∆ is empty. Consequently,
the expression e can be type checked as ·; Φ; Γ ⊢ e : ♢⊥N.

C. A state machine as a policy

Our next example describes an encoding of state machine as
a policy which allows information to be released in a step-wise
manner depending the state of the system.

To understand this, consider the function f below. It takes
in a boxed secret and declassifies it in two steps. In the first
step, it declassifies the input using a policy ϕ1 : ♢⊤N →
♢⊥(♢⊥N×□ϕ2

♢⊤N) which itself returns a boxed secret of
type □ϕ2

♢⊤N, along with a public number. Basically, ϕ1

makes a part of the secret publicly available in the first step
and controls the future inspection of the remaining secret
by returning a boxed value which can only be inspected by

ϕ2 : ♢⊤N → ♢⊥N. The second step of declassification with ϕ2

happens next in f and finally the two public parts of the input
secret are returned as the output. The function f can be type
checked as ∆;Φ; · ⊢ f : □ϕ1(♢⊤N) → ♢⊥(♢⊥N× ♢⊥N),
where ∆ is described below and Φ is empty.

f : □ϕ1(♢⊤N) → ♢⊥(♢⊥N× ♢⊥N)
f ≜ λx. bind y = dec ϕ1 x in

let z = dec ϕ2 (snd y) in ret (fst y, z)
where
∆ = [ϕ1 : ♢⊤N → ♢⊥(♢⊥N×□ϕ2

♢⊤N),
ϕ2 : ♢⊤N → ♢⊥N]

D. Partial and conditional declassification

Our final program is an example of a conditional declas-
sification using coret and split, as described in the function
f below. The function f takes two arguments, a boxed
secret number (of type □ϕ2·ϕ1

♢ℓN) which is boxed under a
composite policy ϕ2·ϕ1 and a unlabelled boolean flag (encoded
using the sum type in a standard way), and returns a natural
number labelled with ℓ′ s.t. ⊥ ⊑ ℓ′ ⊑ ℓ. Based on the boolean
flag b the function f either completely declassifies the secret
in the left branch using the complete policy ϕ2 ·ϕ1, or partially
declassifies it in the right branch. In the right branch, the func-
tion splits the boxed secret into a secret which is nested under
two boxes using the split construct, split x : □ϕ′(□ϕ1♢ℓN),
where ϕ′ is an outer policy simulating the composition ϕ2 after
ϕ1 (as described earlier in the typing of the split construct).
Then it strips off the outer box (and hence the possibility
of declassification using the outer policy ϕ2) using the coret
construct and binds the result to a variable y which is of type
□ϕ1♢ℓN. Finally, it declassifies only using the inner policy ϕ1

via the dec construct, dec ϕ1 y. The function f can be type
checked as ∆; ·; · ⊢ f : □ϕ2·ϕ1

(♢ℓN) → (N+ N) → ♢ℓ′N,
where ∆ is described below.

f : □ϕ2·ϕ1(♢ℓN) → (N+ N) → ♢ℓ′N
f ≜ λ x b.

case b of
. dec ϕ x

. let y = coret (split x) in dec ϕ1 y

∆ = [ϕ1 : ♢ℓN → ♢ℓ′N, ϕ2 : ♢ℓ′N → ♢⊥N]

VII. DISCUSSION

A. Syntactic type checking of policies

As mentioned earlier, policies in the context Φ can be
interfering and are only required to be well typed, which we
specified so far using the semantic typing provided by our
unary logical relation. However, use of logical relations for
type safety is not necessary, type safety of policy code can
be enforced using a simple non-IFC syntactic system (typing
judgement given by Γ ⊩ e : τ). This type system can be
thought of as a weaker version of the type system presented
earlier in Fig. 3, which only cares about type safety and not
security. As a result, the typing of bind no longer requires
a constraint on labels anymore. All the other rules are as
expected and can be found in our HOL development [13].
We also describe some selected rules in the appendix below.

Γ ⊩ e : ♢ℓτ Γ, x : τ ⊩ e′ : ♢ℓ′τ
′

Γ ⊩ bind x = e in e′ : ♢ℓ′τ
′ T-bind

We prove that well typed terms under this type system
are also semantically well typed (i.e. are in the unary logical
relation) by proving the following theorem.

Theorem 13 (Semantic type safety).
Γ ⊩ e : τ ∧ δ ∈ ⌊Γ⌋V =⇒ e δ ∈ ⌊τ⌋E

As a result, we can change the definition of the policy
assumptions predicate for the unary policy context (new Def-
inition 14) to use the syntactic instead of the semantic typing
(contrast this to the previous Definition 4 which requires a
semantic argument).

Definition 14 (Policy assumptions for Φ modified).
PA Φ ≜ ∀(ϕ, τ) ∈ dom(Φ). closed ϕ ∧
∃τ1, τ2. τ = τ1 → τ2 ∧ · ⊩ ϕ : τ1 → τ2

The fundamental theorems and the soundness of DeCC with
this change can be proved as expected and can be found in
our accompanying HOL artefact [13].

B. Call-by-name semantics

Since DCC [4] was studied for noninterference in a Call-
By-Name (CBN) setting, we were curious to understand if our
results can be obtained for DeCC with a CBN semantics too.
It turns out, they can be. In fact, we built an alternate version
of DeCC (which we refer to as DeCCN) with minimal (and
only expected) changes pertaining to the CBN evaluation and
showed similar results. We do not describe those changes here
but the complete development with proofs can be found in our
accompanying HOL artefacts [13]. However, we would like to
point out that the CBN version has a slightly different meta
theory as far as the properties of the declassification modality
are concerned. Out of the three properties that we described in

Fig. 6, while P1 and P3 still hold for DeCCN , the property
P2 for DeCCN (Theorem 15) is somewhat different.

Theorem 15 (P2 for the declassification modality of DeCCN).
∀τ . λx.fmap coret (cojoin x) id ∈ ⌊□idτ → □idτ⌋E ⇐⇒

id ∈ ⌊□idτ → □idτ⌋E
In particular, P2 for DeCCN only holds for the id-graded

declassification modality. This is still sufficient to show that
the ungraded box (i.e. the id graded box) is a comonad and
its policy graded version provides guarantees wrt RSD like
our Call-By-Value (CBV) version. However, it is still an open
question to understand the implications of the extra generality
that the property P2 of the CBV version offers.

C. Other language features

DeCC has been deliberately kept as a minimal core calculus.
This is done to focus our attention on the modal aspects of
semantic declassification in a higher-order setting. Addition
of other language features like fixpoints (like in [4]) and
polymorphism (like in [21]) can be done but will require
adding step indices [22] to the model. Addition of higher-
order mutable state like in CG [5] will involve more careful
changes. In addition to step indices in the semantic model, we
can also anticipate changes in the proof theory to track and
restrict updates to locations involved in declassified terms like
in delimited release. Extending DeCC to accommodate such
language features is future work.

VIII. RELATED WORK

In this section we describe prior work that is closely related
to DeCC both from both type-theoretic and declassification
perspective.

Related work on graded modal types for IFC: The use
of graded modal types for IFC is fairly limited in prior work.

DCC [4] is the first paper in our knowledge that shows use
of graded monads for labelling and tracking of information
for a core functional calculus. As mentioned earlier, DCC is
one of the building blocks for our work. Our work inherits
DCC’s monadic approach for tracking of information flow
using security labels. But additionally in our work we also
introduce a new graded modality for the purpose of semantic
declassification, which is missing from DCC. Also, while DCC
uses noninterference as its soundness criterion, for us RSD
serves that purpose.

Another building block for our work has been the CG [5],
[6] calculus. In particular, DeCC’s semantic type theory is
heavily inspired from that of CG. This is reflected in the choice
of unary and binary logical relations to build our semantic
model. However, there are several differences between CG
and DeCC both in the proof theoretic and semantic aspects
of the type theory. First, CG uses a doubly graded monad
(to track information from read and write effects on state), as
opposed to the DeCC’s monad which only has one grade (to
track information on the term inside the monad). As a result,
CG’s semantic model (both unary and binary relations) differ
considerably from ours. Another difference from CG is that

CG uses two different modalities for labelling and tracking of
labels, while for DeCC the diamond modality handles both.
CG also doesn’t have any counterpart for our box modality and
also cannot reason about semantically secure code, this results
in substantial differences in both the syntactic and semantic
aspects of the two type theories. Finally, logical relations in
CG are only required for proving soundness (which is wrt
noninterference), while for DeCC logical relations also play a
crucial role for enabling semantic declassification in addition
to the proof of soundness (which is wrt RSD).

SLIO [23] is another system similar to CG. It uses a
different but still a doubly graded monad for enforcing nonin-
terference over programs with state. But yet, it was shown to
be equally expressive to CG [6]. The interpretation of SLIO
types is described using its predecessor LIO [24] which is a
dynamic enforcement system for IFC. Our approach towards
interpretation of types is very different from SLIO, as we
do not interpret our types using LIO but instead use logical
relations defined over the pure and forcing semantics which
are free from labels.

Finally, there is also some work on the “who” dimension
of declassification like [25], [26] which uses a says modality
to annotate types with labels containing both confidentiality
and integrity components. The soundness property in that
setting is a variant of robustness (and endorsement) against
adversarial code modelled as evaluation context. In our cur-
rent development we have only targeted declassification via
semantic policies, which is often categorised under the “what”
dimension of declassification [8]. Extending DeCC to reason
about variants of robustness (and endorsement) would be an
interesting direction of future work.

Related work on declassification: As mentioned earlier,
this work builds upon two classical notions of “what” declas-
sification namely delimited release [9] and relaxed noninter-
ference [10]. We have already elaborated extensively on the
difference from these approaches in the introduction of the
paper. So, now we compare our work to other ideas in this
space.

Closest to our work are the approaches which have
tried to extend relaxed noninterference style policies with
indistinguishability-based soundness. One such approach is
the work by Ngo et al. [27] which leverages parametricity
theorem [27] to achieve this. The goal there is to use a
standard non-IFC type system coupled with the abstraction
theorem to reason about security in the style of theorems
for free [28]. There are several differences between their
approach and ours. At the outset, their approach rests upon
ideas from parametricity while ours on modal logic, this
leads to development of very different proof theory and
semantic foundations. Also, in our approach we maintain a
clear distinction between security labels and policies that can
downgrade those labels. This distinction does not exist in
their approach, in their system only policy functions exist
which determine what can be declassified, but not to what
level. This design decision leads to considerable differences
in the semantic model. In particular, their logical relations

are not label aware and they only consider a binary logical
relation but not unary. Also, in DeCC we incorporate ways
to reason about semantically secure policies, which allows us
to build operations like inject and split. It’s not immediately
clear if the effect of such operations can be simulated in their
system. In particular, DeCC allows for conditional and partial
release via a combination of coret and split as demonstrated
using an example in Section VI-D, its unclear if such use
cases can be modelled in their system without requiring
further modifications. We believe answering such questions
would require investigating relative expressiveness of these
systems in a more formal sense, which could be an interesting
direction for future work. There is also work on use of type-
based abstraction from existing languages to encode relaxed
noninterference policies in an object-oriented setting [29]. This
is again a very different approach from the one that we take
in DeCC.

On the use of logical relations in the declassification setting,
there has also been a recent work [30] studying similar logical
relation models for the “where” dimension of declassification
(following Paralocks [31]) in a higher-order setting. However,
the approach taken in [30] uses a type and effect system in
the style of what is called as fine-grained tracking approach
for secure information flow, as used in FG [5], [6] and
FlowCaml [12], for instance. We believe similar results can
be obtained in a modal setup of DeCC but it will require
adding constructs for opening and closing locks, and tracking
their state at the type level.

Finally, state machines based policies for declassification
have been studied in the context of reactive information flow
labels [32]. However, such policies were studied wrt piecewise
noninterference [32] which only ensure indistinguishability
over subtraces and not extensionally like RSD. Also, enforce-
ment of such policies was studied in an imperative setting with
no higher-order functions and using a non-modal approach.

IX. CONCLUSION

In this work we presented DeCC, a graded-modal-type-
theoretic framework for reasoning about semantic declassi-
fication in higher-order functional programs. DeCC builds
on prior work which uses graded-modal types for reasoning
about noninterference namely DCC and CG. DeCC uses
an existing graded monad for classification of information
which is inherited from DCC, but introduces a new graded
modality for declassification. We describe interaction between
the two graded modalities, and also conditions under which
our new graded modality forms a comonad. We build logical
relations model for the types of DeCC and use that to prove
Relaxed Semantic Declassification, a security criterion which
is inspired from delimited release and relaxed noninterference.
Finally, we show encoding of several declassification scenarios
within DeCC and provide machine verified results in HOL4
as accompanying artefacts.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their useful comments and feedback. Vineet Rajani
was supported in part by the EPSRC grants EP/Y003535/1
and EP/X015076/1, and by the ARIA’s Safeguarded AI pro-
gramme. Hrutvik Kanabar was supported in part by the UK
Research Institute in Verified Trustworthy Software Systems
(VeTSS).

REFERENCES

[1] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE J. Sel. Areas Commun., vol. 21, no. 1, pp. 5–19, 2003.
[Online]. Available: https://doi.org/10.1109/JSAC.2002.806121

[2] J. A. Goguen and J. Meseguer, “Security policies and security
models,” in 1982 IEEE Symposium on Security and Privacy, Oakland,
CA, USA, April 26-28, 1982, 1982, pp. 11–20. [Online]. Available:
https://doi.org/10.1109/SP.1982.10014

[3] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” J. Comput.
Secur., vol. 18, no. 6, pp. 1157–1210, 2010. [Online]. Available:
https://doi.org/10.3233/JCS-2009-0393

[4] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke, “A core
calculus of dependency,” in POPL ’99, Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, TX, USA, January 20-22, 1999, 1999, pp.
147–160. [Online]. Available: https://doi.org/10.1145/292540.292555

[5] V. Rajani and D. Garg, “Types for information flow control: Labeling
granularity and semantic models,” in 31st IEEE Computer Security
Foundations Symposium, CSF 2018, Oxford, United Kingdom, July
9-12, 2018. IEEE Computer Society, 2018, pp. 233–246. [Online].
Available: https://doi.org/10.1109/CSF.2018.00024

[6] ——, “On the expressiveness and semantics of information flow
types,” J. Comput. Secur., vol. 28, no. 1, pp. 129–156, 2020. [Online].
Available: https://doi.org/10.3233/JCS-191382

[7] B. Moon, H. E. III, and D. Orchard, “Graded modal dependent
type theory,” in Programming Languages and Systems - 30th
European Symposium on Programming, ESOP 2021, Luxembourg
City, Luxembourg, March 27 - April 1, 2021, Proceedings, vol.
12648. Springer, 2021, pp. 462–490. [Online]. Available: https:
//doi.org/10.1007/978-3-030-72019-3 17

[8] A. Sabelfeld and D. Sands, “Declassification: Dimensions and
principles,” J. Comput. Secur., vol. 17, no. 5, pp. 517–548, 2009.
[Online]. Available: https://doi.org/10.3233/JCS-2009-0352

[9] A. Sabelfeld and A. C. Myers, “A model for delimited information
release,” in Software Security - Theories and Systems, Second Mext-NSF-
JSPS International Symposium, ISSS 2003, Tokyo, Japan, November
4-6, 2003, Revised Papers, vol. 3233. Springer, 2003, pp. 174–191.
[Online]. Available: https://doi.org/10.1007/978-3-540-37621-7 9

[10] P. Li and S. Zdancewic, “Downgrading policies and relaxed
noninterference,” in Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2005,
Long Beach, California, USA, January 12-14, 2005, 2005, pp. 158–170.
[Online]. Available: https://doi.org/10.1145/1040305.1040319

[11] K. Slind and M. Norrish, “A brief overview of HOL4,” in
Theorem Proving in Higher Order Logics, 21st International
Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008.
Proceedings, 2008, pp. 28–32. [Online]. Available: https://doi.org/10.
1007/978-3-540-71067-7 6

[12] F. Pottier and V. Simonet, “Information flow inference for ML,” ACM
Trans. Program. Lang. Syst., vol. 25, no. 1, pp. 117–158, 2003.
[Online]. Available: https://doi.org/10.1145/596980.596983

[13] V. Rajani, A. Coleman, and H. Kanabar, “A graded modal approach
to relaxed semantic declassification (HOL mechanisation),” 2025.
[Online]. Available: https://doi.org/10.5281/zenodo.15421629

[14] V. Rajani, M. Gaboardi, D. Garg, and J. Hoffmann, “A unifying
type-theory for higher-order (amortized) cost analysis,” Proc. ACM
Program. Lang., vol. 5, no. POPL, pp. 1–28, 2021. [Online]. Available:
https://doi.org/10.1145/3434308

[15] V. Rajani, G. Barthe, and D. Garg, “A modal type theory of
expected cost in higher-order probabilistic programs,” Proc. ACM
Program. Lang., vol. 8, no. OOPSLA2, 2024. [Online]. Available:
https://doi.org/10.1145/3689725

[16] B. Jacobs, Introduction to Coalgebra: Towards Mathematics of States
and Observation. Cambridge University Press, 2016, vol. 59. [Online].
Available: https://doi.org/10.1017/CBO9781316823187

[17] G. A. Kavvos, “Modalities, cohesion, and information flow,” Proc. ACM
Program. Lang., vol. 3, no. POPL, pp. 20:1–20:29, 2019. [Online].
Available: https://doi.org/10.1145/3290333

[18] J. Sterling and R. Harper, “Sheaf semantics of termination-
insensitive noninterference,” in 7th International Conference on
Formal Structures for Computation and Deduction, FSCD 2022, August
2-5, 2022, Haifa, Israel, 2022, pp. 5:1–5:19. [Online]. Available:
https://doi.org/10.4230/LIPIcs.FSCD.2022.5

[19] J. Power and H. Watanabe, “Combining a monad and a comonad,”
Theoretical Computer Science, vol. 280, no. 1, pp. 137–162, 2002.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S030439750100024X

[20] M. Gaboardi, S.-y. Katsumata, D. Orchard, F. Breuvart, and T. Uustalu,
“Combining effects and coeffects via grading,” in Proceedings of
the 21st ACM SIGPLAN International Conference on Functional
Programming. Association for Computing Machinery, 2016, p.
476–489. [Online]. Available: https://doi.org/10.1145/2951913.2951939

[21] M. Abadi, “Access control in a core calculus of dependency,”
SIGPLAN Not., vol. 41, no. 9, p. 263–273, 2006. [Online]. Available:
https://doi.org/10.1145/1160074.1159839

[22] A. Ahmed, “Step-indexed syntactic logical relations for recursive and
quantified types,” in Proceedings of the 15th European Conference
on Programming Languages and Systems. Springer-Verlag, 2006, p.
69–83. [Online]. Available: https://doi.org/10.1007/11693024 6

[23] P. Buiras, D. Vytiniotis, and A. Russo, “HLIO: mixing static
and dynamic typing for information-flow control in haskell,” in
Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming, ICFP 2015, Vancouver, BC, Canada,
September 1-3, 2015, 2015, pp. 289–301. [Online]. Available:
https://doi.org/10.1145/2784731.2784758

[24] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières, “Flexible
dynamic information flow control in haskell,” in Proceedings of the
4th ACM SIGPLAN Symposium on Haskell, Haskell 2011, Tokyo,
Japan, 22 September 2011, 2011, pp. 95–106. [Online]. Available:
https://doi.org/10.1145/2034675.2034688

[25] O. Arden and A. C. Myers, “A calculus for flow-limited authorization,”
in 2016 IEEE 29th Computer Security Foundations Symposium (CSF),
2016, pp. 135–149. [Online]. Available: https://doi.org/10.1109/CSF.
2016.17

[26] E. Cecchetti, A. C. Myers, and O. Arden, “Nonmalleable information
flow control,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. Association for Computing
Machinery, 2017, p. 1875–1891. [Online]. Available: https://doi.org/10.
1145/3133956.3134054

[27] M. Ngo, D. A. Naumann, and T. Rezk, “Type-based declassification for
free,” in Formal Methods and Software Engineering - 22nd International
Conference on Formal Engineering Methods, ICFEM 2020, Singapore,
Singapore, March 1-3, 2021, Proceedings, 2020, pp. 181–197. [Online].
Available: https://doi.org/10.1007/978-3-030-63406-3 11

[28] P. Wadler, “Theorems for free!” in Proceedings of the Fourth
International Conference on Functional Programming Languages and
Computer Architecture. Association for Computing Machinery, 1989,
p. 347–359. [Online]. Available: https://doi.org/10.1145/99370.99404

[29] R. Cruz, T. Rezk, B. P. Serpette, and É. Tanter, “Type abstraction
for relaxed noninterference,” in 31st European Conference on
Object-Oriented Programming, ECOOP 2017, June 19-23, 2017,
Barcelona, Spain, 2017, pp. 7:1–7:27. [Online]. Available: https:
//doi.org/10.4230/LIPIcs.ECOOP.2017.7

[30] J. Menz, A. K. Hirsch, P. Li, and D. Garg, “Compositional
security definitions for higher-order where declassification,” Proc. ACM
Program. Lang., vol. 7, no. OOPSLA1, pp. 406–433, 2023. [Online].
Available: https://doi.org/10.1145/3586041

[31] N. Broberg and D. Sands, “Paralocks: role-based information flow
control and beyond,” in Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, 2010, pp. 431–444.
[Online]. Available: https://doi.org/10.1145/1706299.1706349

[32] E. Kozyri and F. B. Schneider, “RIF: reactive information flow labels,”
J. Comput. Secur., vol. 28, no. 2, pp. 191–228, 2020. [Online].
Available: https://doi.org/10.3233/JCS-191316

https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1145/292540.292555
https://doi.org/10.1109/CSF.2018.00024
https://doi.org/10.3233/JCS-191382
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.1007/978-3-540-37621-7_9
https://doi.org/10.1145/1040305.1040319
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1145/596980.596983
https://doi.org/10.5281/zenodo.15421629
https://doi.org/10.1145/3434308
https://doi.org/10.1145/3689725
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1145/3290333
https://doi.org/10.4230/LIPIcs.FSCD.2022.5
https://www.sciencedirect.com/science/article/pii/S030439750100024X
https://www.sciencedirect.com/science/article/pii/S030439750100024X
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1145/1160074.1159839
https://doi.org/10.1007/11693024_6
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1109/CSF.2016.17
https://doi.org/10.1109/CSF.2016.17
https://doi.org/10.1145/3133956.3134054
https://doi.org/10.1145/3133956.3134054
https://doi.org/10.1007/978-3-030-63406-3_11
https://doi.org/10.1145/99370.99404
https://doi.org/10.4230/LIPIcs.ECOOP.2017.7
https://doi.org/10.4230/LIPIcs.ECOOP.2017.7
https://doi.org/10.1145/3586041
https://doi.org/10.1145/1706299.1706349
https://doi.org/10.3233/JCS-191316

APPENDIX

Typing judgement: Γ ⊩ e : τ

Γ ⊩ e : ♢ℓτ Γ, x : τ ⊩ e′ : ♢ℓ′τ
′

Γ ⊩ bind x = e in e′ : ♢ℓ′τ
′ T-bind

Γ ⊩ e : □ϕ,τ ′τ Γ ⊩ ϕ : τ → τ ′

Γ ⊩ dec ϕ e : τ ′
T-dec

Γ ⊩ e : τ Γ ⊩ ϕ : τ → τ ′

Γ ⊩ □e : □ϕ,τ ′τ
T-inject

Γ ⊩ e : □ϕ2·ϕ1,τ ′τ Γ ⊩ ϕ1 : τ → τ ′′ Γ ⊩ ϕ2 : τ ′′ → τ ′ ϕ′ ≜ λx.let y = dec ϕ1 x in ϕ2 y

Γ ⊩ split e : □ϕ′□ϕ1τ
T-split

Fig. 8. Type system for policies (selected rules)

TYPING DERIVATION OF EXAMPLES

Example 1: Semantically secure program on all inputs

Let
ϕ : ♢ℓN → ♢⊥N
ϕ ≜ λx.bind y = x in ret ((4 ∗ y)%2 + 10)
∆ ≜ [(ϕ : ♢ℓN → ♢⊥N)]

∆; ·;x : ♢ℓN ⊢ x : ♢ℓN
∆(ϕ) = ♢ℓN → ♢⊥N

∆; ·;x : ♢ℓN ⊢ dec ϕ x : ♢⊥N
∆; ·; · ⊢ λx. dec ϕ x : ♢ℓN → ♢⊥N

Example 2: Semantically secure program on some inputs

Let
ϕ : ♢ℓ(N× N) → ♢⊥N
ϕ ≜ λx.bind y = x in ret (fst y + snd y)
Φ ≜ [ϕ : ♢ℓ(N× N) → ♢⊥N]

·; Φ;x : □ϕ♢ℓ(N× N) ⊢ x : □ϕ♢ℓ(N× N)
Φ(ϕ) = ♢ℓ(N× N) → ♢⊥N

·; Φ;x : □ϕ♢ℓ(N× N) ⊢ dec ϕ x : ♢⊥N

Example 3: A state machine as a policy

Let
∆ ≜ [ϕ1 : ♢⊤N → ♢⊥(♢⊥N×□ϕ2♢⊤N), ϕ2 : ♢⊤N → ♢⊥N]
f ≜ λx. bind y = dec ϕ1 x in e1
e1 ≜ (λz.ret (fst y, z)) (dec ϕ2 (snd y))

D4:

∆; ·;x : □ϕ1
(♢⊤N), y : (♢⊥N×□ϕ2

♢⊤N) ⊢ y : (♢⊥N×□ϕ2
♢⊤N)

∆; ·;x : □ϕ1
(♢⊤N), y : (♢⊥N×□ϕ2

♢⊤N) ⊢ snd y : □ϕ2
♢⊤N

∆(ϕ2) = ♢⊤N → ♢⊥N

∆; ·;x : □ϕ1
(♢⊤N), y : (♢⊥N×□ϕ2

♢⊤N) ⊢ (dec ϕ2 (snd y)) : ♢⊥N

D3:

∆; ·;x : □ϕ1
(♢⊤N), y : (♢⊥N×□ϕ2

♢⊤N), z : ♢⊥N ⊢ ret (fst y, z) : ♢⊥(♢⊥N× ♢⊥N)
∆; ·;x : □ϕ1(♢⊤N), y : (♢⊥N×□ϕ2♢⊤N) ⊢ (λz.ret (fst y, z)) : ♢⊥N → ♢⊥(♢⊥N× ♢⊥N)

D2:
D3 D4

∆; ·;x : □ϕ1
(♢⊤N), y : (♢⊥N×□ϕ2

♢⊤N) ⊢ (λz.ret (fst y, z)) (dec ϕ2 (snd y)) : ♢⊥(♢⊥N× ♢⊥N)
∆; ·;x : □ϕ1 ,y : (♢⊥N×□ϕ2♢⊤N) ⊢ e1 : ♢⊥(♢⊥N× ♢⊥N)

D1:

∆; ·;x : □ϕ1
(♢⊤N) ⊢ x : □ϕ1

(♢⊤N)
∆(ϕ1) = ♢⊤N → ♢⊥(♢⊥N×□ϕ2

♢⊤N)

∆; ·;x : □ϕ1(♢⊤N) ⊢ dec ϕ1 x : ♢⊥(♢⊥N×□ϕ2♢⊤N)

Main derivation:
D1 D2

∆; ·;x : □ϕ1(♢⊤N) ⊢ bind y = dec ϕ1 x in e1 : ♢⊥(♢⊥N× ♢⊥N)
∆; ·; · ⊢ λx. bind y = dec ϕ1 x in e1 : □ϕ1

(♢⊤N) → ♢⊥(♢⊥N× ♢⊥N)

Example 4: Partial and conditional declassification

∆ ≜ [ϕ : ♢ℓN → ♢⊥N, ϕ1 : ♢ℓN → ♢ℓ′N, ϕ2 : ♢ℓ′N → ♢⊥N]
f ≜ λ x b. case b of .e1 .e2
e1 ≜ dec ϕ x

e2 ≜ (λy.dec ϕ1 y) (coret (split x))

D5:

∆;Φ;x : □ϕ(♢ℓN), b : (N+ N) ⊢ x : □ϕ(♢ℓN)

D4:

D5 ϕ = ϕ2 · ϕ1 ∆(ϕ1) = ♢ℓN → ♢ℓ′N ∆(ϕ2) = ♢ℓ′N → ♢⊥N ϕ′ ≜ λx.let y = dec ϕ1 x in ϕ2 y

∆;Φ;x : □ϕ(♢ℓN), b : (N+ N) ⊢ split x : □ϕ′(□ϕ1
♢ℓN)

∆;Φ;x : □ϕ(♢ℓN), b : (N+ N) ⊢ coret (split x) : □ϕ1
♢ℓN

D3:

∆;Φ;x : □ϕ(♢ℓN), b : (N+ N), y : □ϕ1
♢ℓN ⊢ y : □ϕ1

♢ℓN
∆(ϕ1) = ♢ℓN → ♢ℓ′N

∆;Φ;x : □ϕ(♢ℓN), b : (N+ N), y : □ϕ1
♢ℓN ⊢ dec ϕ1 y : ♢ℓ′N

∆;Φ;x : □ϕ(♢ℓN), b : (N+ N) ⊢ (λy.dec ϕ1 y) : □ϕ1♢ℓN → ♢ℓ′N

D2:
D3 D4

∆;Φ;x : □ϕ(♢ℓN), b : (N+ N) ⊢ (λy.dec ϕ1 y) (coret (split x)) : ♢ℓ′N
∆;Φ;x : □ϕ(♢ℓN), b : (N+ N) ⊢ e2 : ♢ℓ′N

D1:

∆;Φ;x : □ϕ(♢ℓN), b : (N+ N) ⊢ x : □ϕ(♢ℓN)
∆(ϕ) = ♢ℓN → ♢⊥N

∆;Φ;x : □ϕ(♢ℓN), b : (N+ N) ⊢ dec ϕ x : ♢⊥N
∆;Φ;x : □ϕ(♢ℓN), b : (N+ N) ⊢ e1 : ♢ℓ′N

Main derivation:

∆;Φ;x : □ϕ(♢ℓN), b : ♢⊥(N+ N) ⊢ b : (N+ N)
D1 D2

∆;Φ;x : □ϕ(♢ℓN), b : (N+ N) ⊢ case b of .e1 .e2 : ♢ℓ′N
∆;Φ; · ⊢ λ x b. case b of .e1 .e2 : □ϕ(♢ℓN) → (N+ N) → ♢ℓ′N

	Introduction
	Background
	Graded modal types for IFC
	Delimited release
	Relaxed Noninterference

	DeCC: The language
	Statics
	Dynamics

	DeCC: The Type theory
	Type system
	Semantic model of types
	Relaxed semantic declassification and soundness

	Meta theory
	Box is a comonad
	Interaction between the modalities

	Examples
	Semantically secure program on all inputs
	Semantically secure program on some inputs
	A state machine as a policy
	Partial and conditional declassification

	Discussion
	Syntactic type checking of policies
	Call-by-name semantics
	Other language features

	Related work
	Conclusion
	References

