
Journal of Computer Security 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Permissive Runtime Information Flow
Control in the Presence of Exceptions
Abhishek Bichhawat a,∗, Vineet Rajani b,∗∗, Deepak Garg c and Christian Hammer d

a IIT Gandhinagar, India
E-mail: abhishek.b@iitgn.ac.in
b Max Planck Institute for Security and Privacy, Germany
E-mail: vineet.rajani@csp.mpg.de
c Max Planck Institute for Software Systems, Saarland Informatics Campus, Germany
E-mail: dg@mpi-sws.org
d University of Potsdam, Germany
E-mail: hammer@cs.uni-potsdam.de

Abstract. Information flow control (IFC) has been extensively studied as an approach to mitigate information
leaks in applications. A vast majority of existing work in this area is based on static analysis. However, some
applications, especially on the Web, are developed using dynamic languages like JavaScript where static analyses
for IFC do not scale well. As a result, there has been a growing interest in recent years to develop dynamic or
runtime information flow analysis techniques. In spite of the advances in the field, runtime information flow analysis
has not been at the helm of information flow security, one of the reasons being that the analysis techniques and
the security property related to them (non-interference) over-approximate information flows (particularly implicit
flows), generating many false positives.

In this paper, we present a sound and precise approach for handling implicit leaks at runtime. In particular, we
present an improvement and enhancement of the so-called permissive-upgrade strategy, which is widely used to
tackle implicit leaks in dynamic information flow control. We improve the strategy’s permissiveness and generalize
it. Building on top of it, we present an approach to handle implicit leaks when dealing with complex features
like unstructured control flow and exceptions in higher-order languages. We explain how we address the challenge
of handling unstructured control flow using immediate post-dominator analysis. We prove that our approach is
sound and precise.
Keywords: Runtime information flow control, permissive-upgrade, control-flow graphs, immediate post-dominator
analysis, exceptions

1. Introduction

Web applications rely extensively on third-party JavaScript to provide useful libraries, page
analytics, advertisements and many other features [1]. In such a mashup model, wherein the
hosting page and the included scripts share the page’s state (called the DOM), all included

*Corresponding author. E-mail: abhishek.b@iitgn.ac.in. Work done while the author was a PhD student at
Saarland University.

**Work done while the author was a PhD student at the Max Planck Institute for Software Systems.

0926-227X/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:abhishek.b@iitgn.ac.in
mailto:vineet.rajani@csp.mpg.de
mailto:dg@mpi-sws.org
mailto:hammer@cs.uni-potsdam.de
mailto:abhishek.b@iitgn.ac.in

2 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

third-party scripts run with the same access privileges as the hosting page. While some third-
party scripts are developed by large, well-known, trustworthy vendors, many other scripts are
developed by small, domain-specific vendors whose commercial motives do not always align with
those of the web-page providers and users. This leaves sensitive information such as passwords,
credit card numbers, email addresses, click histories, cookies and location information vulnerable
to inadvertent bugs and deliberate exfiltration by third-party scripts. In many cases, developers
are fully aware that a third-party script accesses sensitive data to provide useful functionality,
but they are unaware that the script also leaks that data on the side. In fact, this is a widespread
problem [2].
The traditional browser security model is based on restricting scripts’ access to data, not on

tracking how scripts use data. Existing web security standards like the same-origin policy [3]
address this problem unsatisfactorily, favoring functionality over privacy. The same-origin policy
(implemented in all major browsers) restricts a web-page and third-party scripts included in it
to communicating with web servers from the including web-page’s domain only. However, broad
exceptions are allowed. For instance, there is no restriction on request parameters in URLs that
fetch images and, unsurprisingly, third-party scripts leak information by encoding it in image
URLs. Content Security Policy [4], also implemented in most browsers, allows a page to white list
scripts that may be included, but places no further restriction on scripts that have been white
listed, thus not helping with the problem above.
Quite a few fine-grained access control techniques have also been proposed [5–12]. However, all

these techniques enforce only access policies and cannot control what a script does with data it
has been provided in good faith. That is, if a third-party script was allowed access to some data
only for local computations, these techniques do not prevent the script from sending the data
on the network. In fact, no mechanism based only on access control can solve the problem of
information leakage in this setting.
The academic community has proposed solutions based on information flow control (IFC), which

ensures the security of confidential information even in the presence of untrusted and buggy code.
The idea is to track the flow of information through the program and prevent any undesired flows
based on a security policy. Research has considered static methods such as type checking and
program analysis, which verify the security policy at compile time [13–20], dynamic methods that
track information flow at runtime [21–32], and gradual and hybrid approaches that combine both
static and dynamic analyses to add precision to the analysis [33–45].
While runtime analysis has the drawback of introducing significant performance overheads,

it can be more permissive than static analysis methods in certain cases [37]. Moreover, static
analyses are mostly ineffective when working with dynamic languages like JavaScript, which is an
indispensable part of the modern Web. The dynamic nature of JavaScript [46, 47] with features
like dynamic typing, runtime code generation (eval), scope-chains and prototype chains makes
sound static analysis difficult. Thus, recent research has focused on dynamic analysis for enforcing
information flow control especially in languages like JavaScript [22, 23, 26–28, 31, 32, 40]. Even
though research in runtime information flow control has made significant inroads in the last decade,
the applicability of these techniques still remains bleak. The major challenge to the practicality
of runtime information flow control is the conservative handling of implicit leaks, which affects
the permissiveness of the approaches.

Bichhawat et al. / Permissive Runtime IFC 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

This paper proposes methods to improve the permissiveness of runtime information flow tech-
niques by presenting mechanisms that enhance the precision of the analyses when handling implicit
leaks. The two main contributions of the paper are as follows:

• To improve the permissiveness of runtime information flow analysis, this paper presents
the generalized permissive-upgrade strategy, a sound improvement and enhancement of the
permissive-upgrade strategy (which is widely used to tackle implicit leaks when enforcing
runtime information flow control [32, 40]). The development improves the original strategy’s
permissiveness and applicability by generalizing the approach to an arbitrary security lattice,
in place of the two-point lattice considered in prior work.
• Most of the existing work in runtime information flow control does not consider implicit
leaks due to complex features like unstructured control flow and exceptions. The proposals
that handle these features are too conservative and require additional annotations in the
program. We present a sound and precise dynamic control scope analysis for handling these
features building on top of the generalized permissive upgrade strategy and without requiring
any additional annotations from the developer.

This paper extends a part of our conference paper [40] and our workshop paper [30]. In par-
ticular, we improve the permissiveness of the existing permissive-upgrade strategy (Section 3),
and the formalism presented in the earlier workshop paper [30] to design a more permissive tech-
nique for enforcing runtime IFC with arbitrary lattices (Section 4.2). We use the generalized
permissive-upgrade strategy to formalize runtime information flow control for a generic system
where programs are represented using control-flow graphs and prove it sound (Section 6), and
show the precision of our analysis technique (Section 5.3). Several proofs and details are covered
in the appendix.

2. Background and Overview

2.1. Information flow control

Information flow control (IFC) approaches control the flow of (confidential) information through
a program based on a given security policy. Typically, pieces of information are classified into
security labels and the policy is a lattice over labels. Information is only allowed to flow up the
lattice. For illustration purposes often the smallest non-trivial lattice L @ H is used, which specifies
that public (low, L) data must not be influenced by confidential (high, H) data. Information flow
control can be used to provide confidentiality (or integrity) of secret (trusted) information; the
work in this paper is, however, limited to confidentiality guarantees. Roughly, the idea behind
information flow control is that an adversary can view all the public outputs of a program. By
preventing private or sensitive data from flowing to public outputs, we prevent the adversary from
obtaining any information about the private or sensitive data.
In general, information can flow along many channels. However, this paper considers two of the

most important flows — explicit and implicit — in deterministic programs [13, 14, 48]. Covert
channels like timing or resource usage are beyond the scope of this paper.
An explicit flow occurs as a result of direct assignment, e.g., the statement public = secret

+ 1 causes an explicit flow from secret to public. An implicit flow occurs due to the control

4 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

structure of the program. For instance, consider the program in Listing 1. The final value of y is
equal to the value of z even though there is no direct assignment from z to y. Leaking a bit like
this can be magnified into leaking a bigger secret bit-by-bit [49].
The soundness of approaches enforcing information flow control is often stated in terms of a

well-defined security property known as non-interference [50], which basically stipulates that high
or secret inputs of a program must not influence its low or publicly observable outputs. While
non-interference is too strong a property in practice, different variants of the definition are proven.
One such variant of non-interference usually established for information flow control techniques is
termination-insensitive non-interference [16]. Roughly, a program is termination-insensitive non-
interferent if any two terminating runs of the program starting from low-equivalent heaps (i.e.,
heaps that look equivalent to the adversary assuming that an adversary can observe some part of
the heap) end in low-equivalent heaps. In particular, this means that the parts of the initial heap
that the adversary cannot see have no influence on the parts of the final heap that it can see.

2.2. Dynamic information flow control

Dynamic IFC usually works by tracking taints or labels on individual program values in the
language runtime. A label represents a mandatory access policy on the value. A value v labeled `
is written v`.
Dynamic IFC analysis propagates labels as data flows during program execution. Explicit flows

are generally handled by carrying over the label of the computed value to the variable being
assigned. For example, in the statement x = y + z, the result of computing y + z will have the
label that is a join of the labels on y and z. This will also be the final label of x. So, if either of
y or z is labeled H (confidential), then the final label of x is also H1.
Implicit flows in a runtime IFC analysis are tracked by maintaining an additional taint, usually

called the program counter taint or program context taint or pc, which is an upper bound on
the label of all the control dependencies that lead to the current instruction being executed. For
example, in the program of Listing 1, the value in variable x at the end of line 3 depends on the
value in z. If z is labeled H, then at line 3, pc = H because of the branch in line 2 that depends
on z. Thus, by tracking pc, dynamic IFC can enforce that x has label H at the end of line 3, thus
taking into account the control dependency.

1 x = false, y = false
2 if (not(z))
3 x = true
4 if (not(x))
5 y = true

Listing 1: Implicit flow from z to y

However, simply tracking control flow dependencies via pc is not enough to guarantee absence
of information flows when labels are flow-sensitive, i.e., when the same variable may hold values
with different labels depending on what program paths are executed. The program in Listing 1

1“x is labeled H” actually means “the value in x is labeled H”. This language convention is used consistently
in the paper.

Bichhawat et al. / Permissive Runtime IFC 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

e = n | x | e1 � e2

c = skip | x := e | c1; c2 | if e then c1 else c2 | while e do c
` = L | M | H | . . .

k, l,m, pc = `

Fig. 1. Syntax of the Language

is a classic counterexample, taken from [22]. Assume that z is labeled H and x and y are labeled
L initially. The final value in y is computed as a function of the value in z. If z contains trueH ,
then y ends with trueL: The branch on line 2 is not taken, so x remains falseL at line 4. Hence,
the branch on line 4 is taken, but pc = L at line 5 and y ends with trueL. If z contains falseH ,
then similar reasoning shows that y ends with falseL. Consequently, in both cases y ends with
label L and its value is exactly equal to the value in z. Hence, an adversary can deduce the value
of z by observing y at the end (which is allowed because y ends with label L). So, this program
leaks information about z despite correct use of pc.

2.3. Basic IFC semantics

Most of the technical development in this paper is based on the simple imperative language
shown in Figure 1. However, the key ideas are orthogonal to the choice of language and generalize
to other languages easily. The use of a simpler language is to simplify non-essential technical
details. Parts of the paper that require additional language features define those features in place.
The language’s expressions include constants or values (n, b), variables (x) and unspecified binary
operators (�) to combine them. The set of variables is fixed upfront. Labels (`) are drawn from a
fixed security lattice with a partial order v, join t, meet u, a least element ⊥ and a top element
>. Lattice elements are written L,M,H, The meta-variables ` and pc (program counter label)
also ranges over lattice elements.
The rules in Figure 2 define the big-step semantics of the language, including standard taint

propagation for IFC: the evaluation relation 〈σ, e〉 ⇓ nk for expressions, and the evaluation relation
〈σ, c〉 ⇓

pc
σ′ for commands. Here, σ denotes a store, a map from variables to labeled values of the

form nk. b represents a Boolean constant. For now, labels k ::= `; this is generalized later when
“partially-leaked” taints are introduced in Section 2.5.
The evaluation relation for expressions evaluates an expression e and returns its value n and

label k. The label k is the join of labels of all variables occurring in e (according to σ). The relation
for commands executes a command c in the context of a store σ, and the current program counter
label pc, and yields a new store σ′. The function Γ(σ(x)) returns the label associated with the
value in x in store σ: If σ(x) = nk, then Γ(σ(x)) = k.
The sequencing rule (seq) evaluates the command c1 under store σ and the current pc label.

This yields a new store σ′′. It then evaluates the command c2 under store σ′′ and the same pc label,
which yields the final store σ′. The if-else rule evaluates the branch condition e to a Boolean
value b with label `. Based on the value of b, one of the branches c1 and c2 is executed under a pc
obtained by joining the current pc and the label ` of b. Similarly, the rules for while (while-t

6 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Expressions:

const
〈σ, n〉 ⇓ n⊥

var
nk := σ(x)
〈σ, x〉 ⇓ nk

oper

〈σ, e′〉 ⇓ n′k
′ 〈σ, e′′〉 ⇓ n′′k

′′

n := n′ � n′′ k := k′ t k′′

〈σ, e′ � e′′〉 ⇓ nk

Statements:

skip
〈σ, skip〉 ⇓

pc
σ

seq
〈σ, c1〉 ⇓

pc
σ′′ 〈σ′′, c2〉 ⇓

pc
σ′

〈σ, c1; c2〉 ⇓
pc
σ′

while-f
〈σ, e〉 ⇓ false`

〈σ, while e do c〉 ⇓
pc
σ

if-else

〈σ, e〉 ⇓ b` i =
{1, if b = true

2, otherwise

}
〈σ, ci〉 ⇓

pct`
σ′

〈σ, if e then c1 else c2〉 ⇓
pc
σ′

while-t

〈σ, e〉 ⇓ true` 〈σ, c〉 ⇓
pct`

σ′′

〈σ′′, while e do c〉 ⇓
pct`

σ′

〈σ, while e do c〉 ⇓
pc
σ′

Fig. 2. Semantics

and while-f) evaluate the loop condition e and execute the loop command c1 while e evaluates
to true. The pc for the loop’s body is obtained by joining the current pc and the label ` of the
result of evaluating e.
The rule for assignment statements are conspicuously missing from Figure 2 because they depend

on the strategy used to control implicit flows. We discuss different approaches to handle implicit
leaks presented in prior work [22, 23] next.

2.4. Dynamically handling implicit leaks using no-sensitive-upgrade check

Preventing leaks due to implicit flow in dynamic IFC requires coarse approximation because a
dynamic monitor only sees program branches that are executed and does not know what assign-
ments may happen in alternate branches in other executions. One such coarse approximation is
the no-sensitive-upgrade (NSU) check proposed by Zdancewic [51]. In the program in Listing 1,
x’s label is upgraded from L to H at line 3 in one of the two executions above, but not the other.
Subsequently, information leaks in the other execution (where x’s label remains L) via the branch
on line 4. The NSU check stops the leak by preventing the assignment on line 3. More generally,
it stops a program whenever a public variable’s label is upgraded due to a high pc. This check
suffices to provide termination-insensitive non-interference, as shown by Austin and Flanagan [22].
The rule for assignment (assn-nsu) corresponding to the NSU check is shown in Figure 3. The

rule checks that the label l of the assigned variable x in the initial store σ is at least as high as pc
(premise pc v l). If this condition is not true, the program gets stuck.
2.4.1. Soundness the no-sensitive-upgrade check
For establishing and proving the security property of termination-insensitive non-interference

(TINI), the observational power of the adversary needs to be defined. An adversary at level ` in the

Bichhawat et al. / Permissive Runtime IFC 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

assn-nsu
l = Γ(σ(x)) pc v l 〈σ, e〉 ⇓ nm

〈σ, x := e〉 ⇓
pc
σ[x 7→ n(pctm)]

Fig. 3. Assignment rule for NSU

lattice is allowed to view all values that have a label less than or equal to `. To prove the security
property of non-interference, it is enough to show that when executing a program beginning with
two different memory stores that are observationally equivalent to an adversary, the final memory
stores are also observationally equivalent to the adversary. For this, the observational equivalence
of two memory stores with respect to an adversary needs to be defined. Store equivalence is
formalized as a relation ∼`, indexed by lattice elements `, representing the adversary.

Definition 1 (Value equivalence). Two labeled values nk
1 and nm

2 are `-equivalent, written nk
1 ∼`

nm
2 , iff either:

(1) (k = m) v ` and n1 = n2 or
(2) k 6v ` and m 6v `

This definition states that for an adversary at security level `, two labeled values nk
1 and nm

2
are equivalent iff either ` can access both values, and n1 and n2 are equal, or it cannot access
either value (k 6v ` and m 6v `). Note that if L @ H, then any two values labeled L and H are
distinguishable for the L-adversary.

Definition 2 (Store equivalence). Two stores σ1 and σ2 are `-equivalent, written σ1 ∼` σ2, iff for
every variable x, σ1(x) ∼` σ2(x).

The following theorem states TINI for the NSU check. The theorem has been proved for various
languages in the past.

Theorem 1 (TINI for NSU). With the assignment rule assn-nsu from Figure 3, if σ1 ∼` σ2
and 〈σ1, c〉 ⇓

pc
σ′1 and 〈σ2, c〉 ⇓

pc
σ′2, then σ′1 ∼` σ

′
2.

Proof. Standard, see e.g., [22] �

2.5. Permissive-upgrade strategy for handling implicit leaks

The no-sensitive-upgrade (NSU) check described earlier provides the basic foundations for sound
dynamic IFC. However, terminating a program preemptively because of the NSU check is quite
restrictive in practice. For example, consider the program of Listing 2, where z is labeled H and
y is labeled L. This program potentially upgrades variable x at line 3 under a high pc, and then
executes function f when y is true and executes function g otherwise. Suppose that f does not
read x. Then, for y 7→ trueL, this program leaks no information, but the NSU check would
terminate this program prematurely at line 3. (Note: g may read x, so x is not a dead variable at
line 3.)

8 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

` = L | H

pc = `

k, l,m = ` | P

k t k = k

L tH = H

L t P = P

H t P = P

Fig. 4. Syntax of labels including the partially-leaked label P

1 x = false
2 if (not(z))
3 x = true
4 if (y) f() else g()
5 x = false

Listing 2: Impermissiveness of the NSU strategy

To allow a dynamic IFC analysis to accept safe executions of programs with variable upgrades
due to high pc, Austin and Flanagan proposed a less restrictive strategy called the permissive-
upgrade strategy [23]. They study this strategy for a two-point lattice L @ H and their strategy
does not immediately generalize to arbitrary security lattices. Whereas NSU stops a program
when a variable’s label is upgraded due to assignment in a high pc, permissive-upgrade allows
the assignment, but labels the variable as partially-leaked or P . The exact intuition behind the
partially-leaked label P is the following:

A variable with a value labeled P may have been implicitly influenced by H-labeled values in
this execution, but in other executions (obtainable by changing H-labeled values in the initial
store), this implicit influence may not exist and, hence, the variable may be labeled L.

The program must be stopped later if it tries to use or case-analyze the variable (in particular,
branching on a partially-leaked Boolean variable is stopped). Permissive-upgrade also ensures
termination-insensitive non-interference, but is strictly more permissive than NSU. For example,
permissive-upgrade stops the leaky program of Listing 1 at line 4 when z contains falseH , but
it allows the program of Listing 2 to execute to completion when y contains trueL.
In the revised syntax of labels, summarized in Figure 4, the labels k, l,m on values can be

either elements of the lattice (L,H) or P . The pc can only be one of L,H because branching on
partially-leaked values is prohibited. The join operation t is lifted to labels including P . Joining
any label with P results in P . For brevity in definitions, the order is extended to L @ H @ P .
However, P is not a new “top” member of the lattice because it receives special treatment in the
operational semantics.
The rule for assignment with permissive-upgrade is

assn-pus
l := Γ(σ(x)) 〈σ, e〉 ⇓ nm

〈σ, x := e〉 ⇓
pc
σ[x 7→ nk]

Bichhawat et al. / Permissive Runtime IFC 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

where k is defined as follows:

k =


m if pc = L

m tH if pc = H and l = H

P otherwise

The first two conditions in the definition of k correspond to the NSU rule (Figure 3). The third
condition applies, in particular, when a variable whose initial label is L is assigned where pc = H.
The NSU check would stop this assignment. With permissive-upgrade, however, the updated
variable is labeled P , consistent with the intuitive meaning of P . This allows more permissiveness
by allowing the assignment to proceed in all cases. To compensate, any program (in particular,
an adversarial program) is disallowed from case analyzing any value labeled P . Consequently, in
the rules for if-then and while (Figure 2), the label of the branch condition is of the form `,
which does not include P . Thus, assignments under high pc succeed under the permissive-upgrade
check but branching or case-analyzing a partially-leaked value is not permitted as that can also
leak information.
The noninterference result obtained for NSU earlier can be extended to permissive-upgrade by

changing the definition of store equivalence. Because no program can case-analyze a P -labeled
value, such a value is equivalent to any other labeled value.

Definition 3. Two labeled values nk
1 and nm

2 are equivalent to an adversary at level L, written
nk

1 ∼L nm
2 , iff either:

(1) (k = m) = L and n1 = n2 or
(2) k = H and m = H or
(3) k = P or m = P

Definition 4. Two stores σ1 and σ2 are L-equivalent, written σ1 ∼L σ2, iff ∀x.σ1(x) ∼L σ2(x).

Theorem 2 (TINI for permissive-upgrade with a two-point lattice). With the assignment rule
assn-PUS, if σ1 ∼L σ2 and 〈c, σ1〉 ⇓pc σ

′
1 and 〈c, σ2〉 ⇓pc σ

′
2, then σ′1 ∼L σ

′
2.

Proof. See [23]. �

3. Improved Permissive-Upgrade Strategy

The original permissive-upgrade strategy as described above lacks permissiveness in some cases.
For example, it rejects the program of Listing 3, which is actually secure. Consider that x is labeled
H and w, y are labeled L. With the original permissive-upgrade strategy, the label of z on line 4
would remain P and the execution would be terminated when branching on z on line 5.

1 y = false
2 if (not(x))
3 y = true
4 z = y || x
5 if (not(z))

10 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

6 w = true

Listing 3: Impermissiveness of the permissive-upgrade strategy

Our improvement makes a small change to the definition of t. We define:

H t P = H

Revisiting the example with this change, z would be labeled H on line 4, which would allow
the execution to branch on line 5, thus taking the execution to completion. The idea behind the
improvement is that an H-labeled value is never observable at L-level. Similarly, the result of
any operation involving an H-labeled value is also never observable at L-level. Thus, the result of
combining P -labeled value with a H-labeled value can safely be labeled H.
Following this change, we also redefine the label k in the assignment rule assn-pus.

k =


m if pc = L

H if pc = H and l = H

P otherwise

The soundness results of the original permissive-upgrade strategy can be extended to show the
soundness of the improved permissive-upgrade strategy. However, a significant difficulty in proving
soundness with P is that the definition of ∼ is no longer transitive. In [23], the authors resolve
this issue by defining a special relation called evolution. We follow a related but non-identical
proof strategy for showing the improved permissive-upgrade strategy sound.

Lemma 1 (Expression Evaluation). If 〈σ1, e〉 ⇓ nk1
1 and 〈σ2, e〉 ⇓ nk2

2 and σ1 ∼L σ2, then nk1
1 ∼L

nk2
2 .

Proof. By induction on e. �

Lemma 2 (Evolution). If pc = H and 〈σ, c〉 ⇓
pc
σ′, then ∀x. Γ(σ(x)) = P =⇒ Γ(σ′(x)) = P .

Proof. By induction on the derivation rules and case analysis on the last rule. �

Lemma 3 (Confinement for improved permissive-upgrade with a two-point lattice). If pc = H
and 〈σ, c〉 ⇓

pc
σ′, then σ ∼L σ

′.

Proof. By induction on the given derivation. �

Theorem 3 (TINI for improved permissive-upgrade with a two-point lattice). With the assign-
ment rule assn-pus and the modifications above, if σ1 ∼L σ2 and 〈σ1, c〉 ⇓

pc
σ′1 and 〈σ2, c〉 ⇓

pc
σ′2,

then σ′1 ∼L σ
′
2.

Proof. By induction on c and case analysis on the last step. �

Bichhawat et al. / Permissive Runtime IFC 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Detailed proofs of the above claims are in Appendix A.1. Note that the definitions and proofs
presented in this section are specific to the two-point lattice and with respect to an adversary at
level L.

4. Generalized Permissive-Upgrade Strategy

Although the permissive-upgrade strategy as described above is useful, its development is in-
complete so far: Austin and Flanagan’s original paper [23], and our improvement (Section 3), both
develop permissive-upgrade for only a two-point security lattice, containing levels L and H with
L @ H, and the new label P . A generalization to a pointwise product of such two-point lattices
(and, hence, a powerset lattice) was suggested by Austin and Flanagan in the original paper, but
not fully developed. As explained later in Section 4.1, this generalization works for the improved
permissive-upgrade strategy and can be proven sound.
However, that still leaves open the question of generalizing permissive-upgrade to arbitrary

lattices. It is not even clear hitherto that this generalization exists. This section shows by con-
struction that a generalization of permissive-upgrade (with our improvement of Section 3) to
arbitrary lattices does indeed exist and that it is, in fact, non-obvious. Specifically, the rule for
adding partially-leaked labels and the definition of store (memory) equivalence needed to prove
non-interference are reasonably involved.

4.1. Generalized improved permissive-upgrade strategy on powerset lattices

Austin and Flanagan point out that permissive-upgrade on a two-point lattice can be generalized
to a pointwise product of such lattices. This generalization can also be extended to the improved
permissive-upgrade strategy presented above. Specifically, let X be an index set — these indices
are called principals (like Alice, Bob etc.) in [23]. Let a label l be a map of type X → {L,H, P}
and let the subclass of pure labels contain maps `, pc of type X → {L,H}. The order @ and the
join operation t can be generalized pointwise to these labels. Finally, the rule assn-pus can be
generalized pointwise by replacing it with the following rule:

assn-gpus
l := Γ(σ(x)) 〈σ, e〉 ⇓ nm

〈σ, x := e〉 ⇓
pc
σ[x 7→ nk]

where k is defined as follows:

k(a) =


m(a) if pc(a) = L

H if pc(a) = H and l(a) = H

P otherwise

In the definition above, a represents a principal like Alice from the set X. It can be shown that for
any semantic derivation in this generalized system, projecting all labels to a given principal yields
a valid semantic derivation in the system with a two-point lattice. This immediately implies non-
interference for the generalized system, where observations are limited to individual principals.

12 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

` = L | M | H | . . .

pc = `

k, l,m = ` | `?

`1 t `2
? = (`1 t `2)?

`1
? t `2

? = (`1 t `2)?

Fig. 5. Labels and label operations

Definition 5. Two labeled values nk
1 and nm

2 are a-equivalent, written nk
1 ≈a nm

2 , iff either:

(1) k(a) = m(a) = L and n1 = n2 or
(2) k(a) = m(a) = H or
(3) k(a) = P or m(a) = P

Definition 6 (Store equivalence). Two stores σ1 and σ2 are `-equivalent, written σ1 ≈a σ2, iff for
every variable x, σ1(x) ≈a σ2(x).

Theorem 4 (TINI for permissive-upgrade with a product lattice). With the assignment rule
assn-gpus, if σ1 ≈a σ2 and 〈σ1, c〉 ⇓

pc
σ′1 and 〈σ2, c〉 ⇓

pc
σ′2, then σ′1 ≈a σ′2.

Proof. The proof follows from Theorem 3 for every principal a. �

This generalization of the two-point lattice to a product of such lattices is interesting because a
powerset lattice can be simulated using such a product. However, this still leaves open the question
of constructing a generalization of permissive-upgrade to an arbitrary lattice (for instance, lattices
like the one shown in Figure 7). Such a generalization is developed next.

4.2. Generalized improved permissive-upgrade on arbitrary lattices

This section shows by construction the generalization of the permissive-upgrade strategy to
arbitrary security lattices. For every element ` of the lattice, a new label `? is introduced which
means “partially-leaked `”, with the following intuition:

A variable labeled `? may contain partially-leaked data, where ` is a lower-bound on the ?-free
labels the variable may have in alternate executions.

The syntax of labels is listed in Figure 5. Labels k, l,m may be lattice elements ` or ?-ed
lattice elements `?. In examples, we continue to use suggestive lattice element names L,M,H
(low, medium, high). Labels of the form ` are called ?-free or pure. Figure 5 also defines the join
operation t on labels. This definition is based on the intuition above. When the two operands
of � are labeled `1 and `2

?, `1 t `2 is a lower bound on the pure label of the resulting value
in any execution (because `2 is a lower bound on the pure label of `2

? in any run). Hence,
`1 t `2

? = (`1 t `2)?. The reason for the definition `1
? t `2

? = (`1 t `2)? is similar.
The rules for assignment are shown in Figure 6. They strictly generalize the rule assn-pus for

the two-point lattice (where P = L?). Rule assn-n applies when the existing label of the variable

Bichhawat et al. / Permissive Runtime IFC 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

assn-n
〈σ, e〉 ⇓ nm l = Γ(σ(x)) l = `x ∨ l = `x

? pc v `x k = pc tm
〈σ, x := e〉 ⇓

pc
σ[x 7→ nk]

assn-s
〈σ, e〉 ⇓ nm l = Γ(σ(x)) l = `x ∨ l = `x

? pc 6v `x k = ((pc tm) u `x)?

〈σ, x := e〉 ⇓
pc
σ[x 7→ nk]

Fig. 6. Assignment rules for the generalized permissive-upgrade

being assigned to is `x or `x
? and pc v `x. The key intuition behind the rule is the following: If

pc v `x, then it is safe to overwrite the variable, because `x is necessarily a lower bound on the
(pure) label of x in this and any alternate execution (see the framebox above). Hence, overwriting
the variable cannot cause an implicit flow. As expected, the label of the overwritten variable is
pc tm, where m is the label of the value assigned to x.
Rule assn-s applies in the remaining case — when pc 6v `x. In this case, there may be an implicit

flow, so the final label on x must have the form `? for some `. The question is which `. Intuitively,
it may seem that one could choose ` = `x, the pure part of the original label of x. The final label
on x would be `x

? and this would satisfy the intuitive meaning of ? written in the framebox
above. Indeed, this intuition suffices for the two-point lattice of Section 2.5 and 3. However, for a
more general lattice, this intuition is unsound, as illustrated with an example below. The correct
label is ((pc tm) u `x)?.

1 if (x′)
2 z = y1
3 else
4 z = y2
5 if (x1)
6 z = x1
7 if (not(x2))
8 z = x2
9 if (z)

10 w = z

Listing 4 Example explaining rule assn-s

H

M1 M2

L′L1 L2

L

Fig. 7. Lattice explaining rule assn-s

Example. We illustrate the need for the label k := ((pc t m) u `x)? instead of k := `x
? in the

rule assn-s. Consider the lattice of Figure 7 and the program of Listing 4. Assume that, initially,
the variables z, w, x1, x′, x2, y1 and y2 have labels H, L1, L1, L′, L2, M1 and M2, respectively.
Fix the attacker at level L1. Fix the value of x1 at trueL1 , so that the branch on line 5 is always
taken and line 6 is always executed. Set y1 7→ falseM1 , y2 7→ trueM2 , w 7→ falseL1 initially. The
initial value of z is irrelevant. Consider two executions of the program starting from two stores
σ1 with x′ 7→ trueL′

, x2 7→ trueL2 and σ2 with x′ 7→ falseL′
, x2 7→ falseL2 . Note that as L′ and

L2 are incomparable to L1 in the lattice, σ1 and σ2 are equivalent for L1.

14 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

w = falseL1 , x1 = trueL1 , y1 = falseM1 , y2 = trueM2

x′ = trueL′
x′ = falseL′

x2 = trueL2 x2 = falseL2

k := `x
? k := ((pc t m) u `x)?

if (x′) pc = L′

z = y1 z = falseM1

else pc = L′ pc = L′

z = y2 z = trueM2 z = trueM2

if (x1) pc = L1 pc = L1 pc = L1
z = x1 z = trueL1 z = trueM2

?
z = trueL?

if (not(x2)) branch not taken pc = L2 pc = L2
z = x2 z = falseL2 z = falseL?

if (z) pc = L1 branch not taken execution halted
w = z w = trueL1

Result w = trueL1 w = falseL1 (leak) no leak
Table 1

Execution steps in two runs of the program from Listing 4, with two variants of the rule assn-s

Requiring k := `x
? in rule assn-s causes an implicit flow that is observable for L1. The inter-

mediate values and labels of the variables for executions starting from σ1 and σ2 are shown in the
second and third columns of Table 1. Starting with σ1, line 2 is executed, but line 4 is not, so z
ends with falseM1 at line 5 (rule assn-n applies at line 2). At line 6, z contains trueL1 (again
by rule assn-n) and line 8 is not executed. Thus, the branch on line 9 is taken and w ends with
trueL1 at line 10. Starting with σ2, line 2 is not executed, but line 4 is, so z becomes trueM2

at line 5 (rule assn-n applies at line 4). At line 6, rule assn-s applies, but because k := `x
? is

assumed in that rule, z now contains the value trueM2? . As the branch on line 7 is taken, at
line 8, z becomes falseL2 by rule assn-n because L2 v M2. Thus, the branch on line 9 is not
taken and w ends with falseL1 in this execution. Hence, w ends with trueL1 and falseL1 in the
two executions, respectively. The attacker at level L1 can distinguish these two results and, hence,
the program leaks the value of x′ and x2 to L1.
With the correct assn-s rule in place, this leak is avoided (last column of Table 1). In that

case, after the assignment on line 6 in the second execution, z has label ((L1 t L1) uM2)? = L?.
Subsequently, after line 8, z gets the label L?. As case analysis on a ?-ed value is not allowed,
the execution is halted on line 9. This guarantees termination-insensitive non-interference with
respect to the attacker at level L1.

4.3. Termination-insensitive non-interference (TINI)

To prove non-interference for the generalized permissive-upgrade, equivalence of labeled values
relative to an adversary at arbitrary lattice level ` needs to be defined. The definition is shown
below (Definition 7). Note that clauses (3)–(5) here refine clause (3) of Definition 5 for the two-
point lattice. The obvious generalization of clause (3) of Definition 5 — nk

1 ∼` nm
2 whenever either

k or m is ?-ed — is too coarse to prove non-interference inductively. For the degenerate case of
the two-point lattice, this definition also degenerates to Definition 5 (there, ` is fixed at L, P = L?

and only L may be ?-ed).

Definition 7. Two values nk
1 and nm

2 are `-equivalent, written nk
1 ∼` nm

2 , iff either

Bichhawat et al. / Permissive Runtime IFC 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(1) k = m = `′ v ` and n1 = n2, or
(2) k = `′ 6v ` and m = `′′ 6v `, or
(3) k = `1

? and m = `2
?, or

(4) k = `1
? and m = `2 and (`2 6v ` or `1 v `2), or

(5) k = `1 and m = `2
? and (`1 6v ` or `2 v `1)

Definition 8. Two stores σ1 and σ2 are `-equivalent, written σ1 ∼` σ2, iff for every variable x,
σ1(x) ∼` σ2(x).

This definition is obtained by constructing (through examples) an extensive transition graph
of pairs of labels that may be assigned to a single variable at corresponding program points in
two executions of the same program. The starting point is label-pairs of the form (`, `). This
characterization of equivalence is both sufficient and necessary. It is sufficient in the sense that it
allows us to prove TINI inductively. It is necessary in the sense that example programs can be
constructed that end in states exercising every possible clause of this definition. Appendix A.2
lists these examples.
Using the above definition of equivalence of labeled values, TINI can be proven for the gener-

alized permissive-upgrade strategy presented above. As before, a significant difficulty in proving
the theorem is that the definition of ∼` is not transitive. Detailed proofs of all the lemmas and
the theorems are presented in Appendix A.3.

Lemma 4 (Expression evaluation). If 〈σ1, e〉 ⇓ nk1
1 and 〈σ2, e〉 ⇓ nk2

2 and σ1 ∼` σ2, then nk1
1 ∼` nk2

2 .

Proof. By induction on e. �

Lemma 5 (?-preservation). If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ(x)) = `? and pc 6v `, then Γ(σ′(x)) = `′? and

`′ v `.

Proof. By induction on the given derivation. �

Corollary 1. If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ(x)) = `? and Γ(σ′(x)) = `′, then pc v `.

Proof. Immediate from Lemma 5. �

Lemma 6 (pc-lemma). If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ′(x)) = `, then σ(x) = σ′(x) or pc v `.

Proof. By induction on the given derivation. �

Corollary 2. If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ(x)) = `? and Γ(σ′(x)) = `′, then pc v `′.

Proof. Immediate from Lemma 6. �

Using these lemmas, the standard confinement lemma and non-interference can be proven.

Lemma 7 (Confinement Lemma). If pc 6v ` and 〈σ, c〉 ⇓
pc
σ′, then σ ∼` σ

′.

16 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Proof. By induction on the given derivation. �

Theorem 5 (TINI for generalized permissive-upgrade for arbitrary lattices). If σ1 ∼` σ2 and
〈σ1, c〉 ⇓

pc
σ′1 and 〈σ2, c〉 ⇓

pc
σ′2, then σ′1 ∼` σ

′
2.

Proof. By induction on c. �

4.4. Comparison of the generalization of Section 4.2 with the generalization of Section 4.1

Two distinct and sound generalizations of the permissive-upgrade strategy for the two-point
lattice have now been described: The generalization of the improved permissive-upgrade to point-
wise products of two-point lattices or, equivalently, to powerset lattices as described in Section 4.1,
and the generalization to arbitrary lattices described in Section 4.2. Since both the generaliza-
tions apply to powerset lattices, an obvious question is whether one is more permissive than the
other on such lattices. The generalization of permissive-upgrade to pointwise lattices described in
Section 4.1 can be more permissive than the generalization described in Section 4.2 for powerset
lattices in certain cases as shown by the example below. The reason for this permissiveness is that
the generalization of permissive-upgrade to pointwise lattices tracks finer taints, i.e., it tracks
partial leaks for each principal separately.

1 if (y)
2 x = z
3 if (z)
4 x = z
5 if (x)
6 z = x

Listing 5 Example where generalization of permissive-up-
grade to pointwise lattices is more permissive than the
generalization to arbitrary lattices

HH

LH HL

LL

Fig. 8. A powerset/product lattice

Example. We use the powerset lattice of Figure 8. This lattice is the pointwise lifting of the
order L @ H to the set S = {L,H} × {L,H}. For brevity, this lattice’s elements are written as
LL, LH, etc. When generalization from Section 4.1 is applied to this lattice, labels are drawn
from the set {L,H, P} × {L,H, P}. These labels are concisely written as LP , HL, etc. For the
generalization from Section 4.2 to arbitrary lattices, labels are drawn from the set S ∪ S?. These
labels are written LH, LH?, etc. Note that LH? parses as (LH)?, not L(H?) (the latter is not a
valid label in the generalization applied to this lattice). Consider the program in Listing 5. Assume
that x, y and z have initial labels LL, HL and LH, respectively and that the initial store contains
y 7→ trueHL, z 7→ trueLH , so the branches on lines 1 and 3 are both taken. The initial value in x
is irrelevant but its label is important. Under the generalization from Section 4.1, x obtains label
(((HL) t (LH)) u (LL))? = LL? at line 2 by rule assn-s. At line 4, the same rule applies but
the label of x remains LL?. When the program tries to branch on x at line 5, it is stopped. In
contrast, under generalization of permissive-upgrade to pointwise lattices, this program executes
to completion. At line 2, the label of x changes to PH by rule assn-gpus. At line 4, the label

Bichhawat et al. / Permissive Runtime IFC 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

changes to LH because pc and the label of z are both LH. Since this new label has no P ,
line 5 executes without halting. Hence, for this example, generalization of permissive-upgrade to
pointwise lattices is more permissive than the generalization to arbitrary lattices presented in
Section 4.2.
We could not find an example for which the generalization of permissive-upgrade to arbitrary

lattices is more permissive than generalization to pointwise lattices in the case of powerset lattices.
But the generalization presented in Section 4.2 is more general than the product construction
(Section 4.1) when applied to arbitrary lattices (and hence, applicable to a broader set of lattices)
as it is unclear whether or how the results of Section 4.1 apply to arbitrary lattices.

5. Handling Implicit Leaks with Complex Features

Implicit flows correspond to control dependence in program analysis, where branch conditions
govern which program path is executed and leak information through the control flow of the
program. For sound analysis and to avoid over-approximation in certain cases, the generalized
permissive upgrade strategy presented earlier works by determining when the influence of a control
construct has ended. This is necessary to lower the pc label for subsequent program statements,
thus preventing overtainting.
For block-structured control flow limited to if and while commands, it is straightforward to

determine where the influence of a control construct ends as this is obvious syntactically. For
example, in the program

if (h) {l = 1;} l = 2

h influences the control flow at l = 1 but not at l = 2. In a big-step operational semantics,
lowering the pc after the influence of a control construct ends is very straightforward since the
pc is raised exactly for the syntactic scope of the control construct. In a small-step semantics, a
bit more is required, but the overall setup is still straightforward: One maintains a stack of pc
labels [51]; the effective pc is the top one. When entering a control flow construct like if or while,
a new pc label, equal to the join of labels of all values on which the construct’s guard depends
with the previous effective pc, is pushed. When exiting the construct, the label is popped.
Unfortunately, it is unclear how to extend this simple strategy (with both big-step and small-

step semantics) to non-block-structured control flow constructs such as break, continue and
return-in-the-middle for functions, all of which occur in imperative high-level languages. For
example, consider the program

l = 1; while(1) {... if(h) {break;}; l = 0; break;}

with h labeled H. This program leaks the value of h into l, but no assignment to l appears in a
syntactic block-scope guarded by h. Indeed, the lexical scoping strategy just described is ineffective
for this program. Tracking information flow in the presence of such unstructured control flows is
non-trivial as the control breaks out of block structures.
Exceptions are even more difficult to handle as they allow for non-local control transfer. Con-

sider, for instance, the program snippet shown below:

18 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

function f() = {
l = 0;
try { g(); } catch(e) { l = 1; }
return l;

}

function g() = {
if (h) {throw 9;}
return 7;

}

The function f() calls the function g(), which throws an exception that is caught by the
exception handler in f() if the value of h is not false. The exception handler modifies the value
of the public variable l, which the function returns. When f is invoked with pc = L, the two
functions together leak the value of h, which is assumed to have a label H, into the return value
of f.
To solve this issue of handling implicit leaks with complex features, we present a precise dynamic

analysis approach building on top of the generalized permissive upgrade strategy using post-
dominator analysis [48, 52].

5.1. Control flow graphs and post-dominator analysis

Our approach is based on an on-the-fly post-dominator analysis at runtime to handle implicit
flows. A control flow graph (CFG), which is a directed graph, is constructed for every new func-
tion before it is executed with every instruction being represented as a node and whose edges
represent the possible control flows. For every branch node, its immediate post-dominator (IPD)
is computed [40, 48, 52]. A stack of pc labels is maintained. When executing a branch node, a new
pc label is pushed on the stack along with the node’s IPD. When the IPD is actually reached, the
pc label along with the IPD is popped from the stack. In prior work [53, 54], it is proved that the
IPD marks the end of the scope of an operation and hence the security context of the operation, so
our strategy is sound. The IPD-based solution works for all forms of unstructured control flow like
break, continue, return-in-the-middle, and exceptions. Multiple return statements in a function
can be represented as a single return node.
Maintaining a precise CFG for post-dominator analysis at runtime in the presence of exceptions

is expensive. As the CFG of a function is constructed on-the-fly when compiling the function at
runtime, an exception-throwing node in a function that does not catch that exception should have
an outgoing control flow edge to the next related exception handler in the runtime call-stack. This
means that the CFG is, in general, inter-procedural, and edges going out of a function depend on
its calling context, so IPDs of nodes in the function must be computed every time the function is
called (the IPDs change based on the earlier functions in the call-stack that called the particular
function where the exception occurs). Moreover, in the case of recursive functions, the nodes must
be replicated for every call. This is rather expensive. Ideally, the function’s CFG should be built
only once when the function is compiled and work intra-procedurally.

5.2. Synthetic exit nodes

In our approach, every function that may throw an unhandled exception and has an exception
handler present earlier in the call-stack (which is assumed to be known at runtime through ad-
ditional data structures in the system) has a special synthetic exit node (SEN), which is placed
after the regular return node of the function in the CFG. Every exception-throwing node, whose
exception will not be caught within the function, has an outgoing edge to the SEN. In essence, the
SEN is treated as the IPD for nodes whose actual IPDs lie outside of the function. By doing this,

Bichhawat et al. / Permissive Runtime IFC 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

all cross-function edges are eliminated and the CFGs become intra-procedural. This allows the
computation of the CFGs just once as compared to the inter-procedural case. For every excep-
tion-throwing instruction that has an associated handler, its context is maintained during dynamic
information flow analysis until the handler is reached.
Thus, function calls and all potential exception-throwing instructions are represented as nodes

with multiple edges (branches) and push a node on the pc-stack. However, a new node is not
pushed on the pc-stack if the IPD of the current node is the same as the IPD on the top of the
pc-stack or if the IPD of the current node is the SEN, as in this case the real IPD, which is outside
of this method, should already be on the pc-stack.
In summary, these semantics emulate the effect of having cross-function edges. For illustration,

consider the two functions f and g from before. The � at the end of g denotes its SEN. Note that
there is an edge from throw 9 to � because throw 9 is not handled within g. � denotes the IPD
of the function call g() and handler catch(e).
function f() = {

l = 0;
try { g(); } catch(e) { l = 1; }
� return l;

}

function g() = {
if (h) {throw 9;}
return 7;

} �

When calling g, the current pc and IPD (L,�) are pushed on the pc-stack. When executing the
condition if (h) a new node is not pushed again, but the top element is merely updated to (H,�)
as its IPD is the SEN �. If h is false, control reaches the return statement but with pc = H. At
�, pc is lowered to L, so f ends with the return value 0 and public label L. If h is true, control
reaches the handler, which is in f and invokes it with the same pc as at the point of exception,
i.e., H. Consequently, the generalized permissive-upgrade strategy marks the assignment in the
catch block as partially-leaked and prevents the implicit information leak in this case.

5.3. Precision proofs

We show that the approach presented above where we pop the pc-stack at the IPD of a node
is precise. In other words, the IPD of a node is the most precise node where the influence of pc
ends, and the top of the pc-stack can be safely popped. Theorem 6 shows this result. For proving
Theorem 6, we formally define a control flow graph, paths on the control flow graph, branch-points
and post-dominators.

Definition 9. (Control flow graph)
A control flow graph is a directed graph G = (N , E , ns, ne,L). N is the set of nodes. E is the set
of control flow edges (n1, n2) ∈ E , where ni ∈ N . (n1, n2) represents n2 may immediately execute
after n1. The nodes ns, ne ∈ N are special nodes representing the start and the end point of G,
respectively. The function L maps the edges in E to labels.

Definition 10. (Path)
A path in a CFG G is a sequence of nodes (n1, n2, ..., nm) such that (ni, ni+1) ∈ E , written as
n1 →p nm. A node n that lies on the path n1 →p nm is written as n ∈ n1 →p nm. The notation
n1 < n2 with respect to two nodes n1 and n2 in a CFG G indicates that n2 lies on a path n1 →p ne

.

20 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Definition 11. (Branch-point)
A branch-point b is a node in a CFG G that has more than one successor, i.e., outdegree(b) > 1.

Definition 12. (Post-dominator)
In a CFG G, a node nd is said to be the post-dominator of a node n if all paths from n to the
end-node pass through nd, i.e., ∀p.n→p ne =⇒ nd ∈ p. The notation nd pd n indicates that nd

is a post-dominator of n.

Definition 13. (Immediate post-dominator)
A node i is the immediate post-dominator of the node n, denoted as IPD(n), iff:

(1) i pd n and
(2) 6 ∃no ∈ N .((no pd n) ∧ (no < i)) or
∀no ∈ N .((no 6= n) =⇒ (no pd n =⇒ no pd i)).

Theorem 6 (Precision). Choosing any node other than the IPD to lower the pc-label will either
give unsound results or be less precise.

Proof. Consider a branch-point b ∈ N with IPD IPD(b) = i ∈ N .
Assume that (n ∈ N) 6= i is the node where the context of the predicate expression in b is
removed. Thus, either:

• b < n < i: Then, ∃p.n 6∈ b→p ne. Thus, if n performs an action that should not have been
performed in the context of the predicate expression in b, it might leak information about
the predicate expression in b.
• b < i < n: Then, for any n′ ∈ N such that i < n′ < n performing an operation that should
not be performed in the context of b would be reported illicit as n′ would be executed in
the context of b.

∗ If n′ pd b, then ∀p.n′ ∈ b →p ne. Hence, the statement n′ executes irrespective of
whether the branch at b is taken or not and hence, does not depend on the predicate
expression in b, i.e., there is no implicit flow from the predicate expression in b to n′,
but still the program might be rejected.

∗ If n′ is a statement executing under the context of another branch-point b′, such that
b′ pd b, then as b′ does not have any implicit flow from the predicate expression in
b, any statement executing under the context of the predicate expression in b′ should
not be influenced by the context of the predicate expression in b. Hence, the program
might be rejected even though there is no information leak.

• i <> n: ∀p.n 6∈ i→p ne or ∀p.n 6∈ b→p ne, n will never be reached. Thus, the context of b
shall not be removed until ne such that b < i < ne. Similar reasoning as in the second case
with n = ne.

Hence, the most precise node where one can safely remove the context of b is n = IPD(b) = i. �

We also show that our design decision to not push the SEN on the pc-stack if the IPD of a node
is SEN is correct. In fact, the actual IPD of a node having SEN as its IPD is the node that is
currently on the top of the stack. This result is shown in Theorem 7.

Bichhawat et al. / Permissive Runtime IFC 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Theorem 7. The actual IPD of a node having SEN as its IPD is the node that is currently on
the top of the pc-stack.

Proof. Assume two functions F and G given by the CFGs G = (N , E , ns, ne,L) and G′ =
(N ′, E ′, n′s, n′e,L′), respectively. The program’s start and exit node are given by Ns and Ne, re-
spectively. Consider a branch-point b′ ∈ N ′ having SEN as its IPD. Assume a branch-point b ∈ N
such that b < b′ < (i = IPD(b)), (i ∈ N) 6= SEN, b is the last executed branch-point and top of
the pc-stack contains i.
∀p.i ∈ b→p ne. Thus, i pd b′ such that b < b′ < i.
T.S. 6 ∃n ∈ b′ →p i | (n pd b′) ∧ (b′ < n < i).
Proof by contradiction: Assume ∃n.n pd b′ | b′ < n < i. Then the node n either lies in the function
F or G or in another function H given by the CFG G′′ = (N ′′, E ′′, n′′s , n′′e ,L′′), such that F calls
H and H calls G.

• n ∈ N ′: As IPD(b′) = SEN and SEN is the last node in a function(G′), ∃p.n 6∈ b→p ne.
• n ∈ N ′′: As ∀p.n ∈ b′ →p Ne and G() < b′, thus, ∀p.n ∈ G() →p Ne, which means

IPD(G()) 6= SEN. Hence, the top of the pc-stack then would have IPD(G()) = (n′′ ∈ N ′′) 6 n
and not i.
• n ∈ N : When the call to G or any other function H is made, it would push i, IPD of the
branch-point on the top of the pc-stack.

Thus, 6 ∃n ∈ b′ →p i | (n pd b′) ∧ (b′ < n < i). Hence, the top of the pc-stack, i is the actual IPD
of any node b′ having SEN as its intra-procedural IPD. �

6. Formal Model

We consider a language with unstructured control flow and exceptions, and give it an operational
semantics with IFC using the generalized permissive-upgrade check. The language is an extension
of that in Figure 1 with unstructured control flow constructs like break, continue, return and
exceptions. A program is a collection of functions (without parameter-passing). The control flow
analysis is performed on a function before it is executed and is abstractly represented as a CFG.
This involves a translation from the language of Figure 1 extended with unstructured control flow
and exceptions into a formal language of CFGs, the syntax of whose nodes is shown in Figure 9.
A program in the CFG language is modeled as a huge control flow graph (G). IPDs are computed

using the algorithm by Lengauer and Tarjan [55] when the CFG is created. For new functions
added at runtime, the CFG is constructed only once. For a non-branching node ι ∈ G, Succ(ι)
denotes ι’s unique successor. For a conditional branching node ι, Left(ι) and Right(ι) denote
successors when the condition is true and false, respectively.
The command if e then c1 else c2 is represented as the node branch e with Left(G, ι) = c1

and Right(G, ι) = c2. Similarly, while e do c is represented as branch e with Left(ι) = c and
Right(ι) being the command following while in the program. A jmp node is added as Succ(c)
with the successor Succ(ι) set to the branch instruction to jump to the predicate. A jmp node in
the CFG also corresponds to break and continue with Succ(ι) pointing to the next node in the
CFG according to the operation. It is also assumed that a function always ends with a return
statement and thus a CFG normally ends with the return node. (Multiple return statements in

22 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

ι := end | x := e | branch e | jmp | return | throw e | catch x | SEN

ρ := [] | (pc, ι)B ρ

Fig. 9. Language Syntax (extends Figure 1)

a function are represented using a single return node.) When ι is a return node, Succ(ι) is the
node to return to in the previous CFG. Here “previous” refers to the previous function in the
call stack (the caller). The return value is saved in a global variable that can be accessed by the
program later on. Every node in the program’s CFG is uniquely identifiable.
In general, every function has an associated exception table that maps each potentially

exception-throwing instruction in the function to the appropriate exception handler within the
function. This is represented by adding a Right edge in the CFG from the instruction’s node
to the handler’s node. throw has only one outgoing edge. It is conservatively assumed that any
unknown code may throw an exception, so function call is exception-throwing for this purpose.
If a function contains unhandled exceptions, the corresponding edges in the CFG point to the
SEN of the CFG. The SEN is only created if one of the previous functions in the call-stack has an
appropriate exception handler for the unhandled exceptions in the current function. When an SEN
node is created, an edge is added from the SEN of the CFG to a node in the previous CFG, which
is either the catch node or the SEN of that CFG. Succ denotes one of these edges. If there are no
appropriate handlers in the call-stack, the exception-throwing nodes have an edge to the end node
of the program CFG. For simplicity of exposition, it is assumed here that all exceptions belong to
a single class — for different types of exceptions, the exception class would also be matched for
determining the appropriate exception handler.
Program configurations for commands (nodes) are represented as 〈σ, ι, ρ〉, where σ represents

the memory store as before, ι represents the currently executing node, and ρ is the pc-stack. The
configuration for expressions is the same as before: 〈σ, e〉.
Each entry of the pc-stack ρ is a pair (`, ι), where ` is a security label and ι is a node in the CFG.

When a new control context is entered, the new pc-label, which is a join of the current context
label and the existing pc-label (the label on the top of the stack), is pushed together with the
IPD ι of the entry point of the control context. This IPD ι uniquely identifies where the control of
the context ends. In the semantics, the meta-function isIPD pops the stack. It takes the current
instruction and the current pc-stack, and returns a new pc-stack. !ρ returns the top frame of the
pc-stack. Γ(!ρ) returns the current context label, also represented as pc in the semantics.

isIPD(ι, ρ) :=
{
ρ.pop() if !ρ = (_, ι)
ρ otherwise

As explained in Section 5.2, a new node (`, ι) is pushed onto ρ only when ι (the IPD) differs from
the corresponding entry on the top of the stack or it is not SEN (Theorem 7). Otherwise, ` is joined
with the label on the top of the stack. This is formally represented using the function ρ.push(`, ι).
The rules in Figure 10 define small-step semantics of CFGs. The rules for expressions are the

same as in Figure 2. The rules are informally explained above. The soundness of the analysis
including unstructured control flow and exceptions is proved below.

Bichhawat et al. / Permissive Runtime IFC 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

assn

ι = (x := e) 〈σ, e〉 ⇓ nm l = Γ(σ(x)) l = `x ∨ l = `x
? pc = Γ(!ρ)

k =
{

pc tm, pc v `x
((pc tm) u `x)?, pc 6v `x

}
σ′ = σ[x 7→ nk] ι′ = Succ(ι) ρ′ = isIPD(ι′, ρ)

〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉

branch

ι = branch e 〈σ, e〉 ⇓ b`

ι′ =
{

Left(ι), if b = true
Right(ι), otherwise

}
ρ′′ = ρ.push(`, IPD(ι)) ρ′ = isIPD(ι′, ρ′′)

〈σ, ι, ρ〉 → 〈σ, ι′, ρ′〉

jmp, ret, sen
ι = jmp or return or SEN ι′ = Succ(ι) ρ′ = isIPD(ι′, ρ)

〈σ, ι, ρ〉 → 〈σ, ι′, ρ′〉

throw

ι = throw e
〈σ, e〉 ⇓ nk pc = Γ(!ρ) excValue = n(kt pc) ι′ = Succ(ι) ρ′ = isIPD(ι′, ρ)

〈σ, ι, ρ〉 → 〈σ, ι′, ρ′〉

catch

ι = catch x excValue = nm l = Γ(σ(x)) l = `x ∨ l = `x
? pc = Γ(!ρ)

k =
{

pc tm, pc v `x
((pc tm) u `x)?, pc 6v `x

}
σ′ = σ[x 7→ nk] ι′ = Succ(ι) ρ′ = isIPD(ι′, ρ)

〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉

end
ι = end

〈σ, ι, ρ〉 → _

Fig. 10. Semantics

To state the theorem formally, the equivalence of different data structures with respect to
the adversary needs to be defined. We reuse value and memory equivalences from Definitions 7
and 8. We prove termination-insensitive non-interference using the generalized permissive-upgrade
strategy, for which we formalize some additional definitions and define auxiliary lemmas. The
detailed proofs, definitions and other lemmas can be found in Appendix B.

Definition 14 (pc-stack equivalence). For two pc-stacks ρ1, ρ2, ρ1 ∼` ρ2 iff the corresponding
nodes of ρ1 and ρ2 having labels less than or equal to ` are equal.

Definition 15 (State equivalence). Two states s1 = 〈σ1, ι1, ρ1〉 and s2 = 〈σ2, ι2, ρ2〉 are equivalent,
written as s1 ∼` s2, iff σ1 ∼` σ2, ι1 = ι2, and ρ1 ∼` ρ2.

Lemma 8 (Confinement Lemma). If 〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉 and Γ(!ρ) 6v `, then σ ∼` σ
′, and

ρ ∼` ρ
′.

Theorem 8. Suppose:

(1) 〈σ1, ι1, ρ1〉 ∼` 〈σ2, ι2, ρ2〉

24 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(2) 〈σ1, ι1, ρ1〉 →∗ 〈σ′1, end, []〉
(3) 〈σ2, ι2, ρ2〉 →∗ 〈σ′2, end, []〉

Then, σ′1 ∼` σ
′
2.

7. Related Work

7.1. Permissive IFC

Secure multi-execution [26] is another approach for enforcing non-interference at runtime, where
one executes multiple copies of the program with different values of sensitive data. Conceptually,
the same code is executed once for each security level (like low and high) with a few constraints.
High inputs in the low execution are replaced by default values, i.e., the low execution of the
program does not see the actual value of the high data but a pre-determined default value.
Additionally, outputs on an `-labeled channel are permitted only in the `-level execution of the
program. This ensures noninterference and precision (the semantics of a secure program are not
altered). However, executing a program multiple times can be prohibitive for a security lattice
with many levels [28, 56]. The runtime overhead incurred can be reduced if the executions are done
in parallel but this requires more hardware resources. In addition to this, secure multi-execution
makes declassification complicated as it requires synchronization between different executions [57].
To tackle the issue of permissiveness with the no-sensitive-upgrade strategy and the permissive-

upgrade strategy, Austin and Flanagan proposed the idea of faceted execution [28], which is the
most permissive of the three. Faceted execution simulates multiple executions simultaneously
within a single runtime. They introduce the concept of faceted values that are pairs of values,
one each for low and high observers. When branching on a faceted value, multiple executions are
simulated for the two values in the facet. To achieve better precision and security guarantees, re-
searchers have proposed techniques that combine faceted execution and secure multi-execution on
an as-needed basis [58, 59]. However, the runtime overheads of faceted execution is also prohibitive
for multiple security levels [56]. This paper, thus, considers only the permissive-upgrade strategy,
which is more permissive than the no-sensitive-upgrade strategy and much less performance-
intensive than faceted execution.
Birgisson et al. [60] describe a testing-based approach that adds variable upgrade annotations

to avoid halting on the NSU check in an implementation of dynamic IFC for JavaScript [27]. A
different way of handling the problem of implicit flows through flow-sensitive labels is to assign
a (fixed) label to each label; this approach has been examined by Buiras et al. in the context of
a language with a dedicated monad for tracking information flows [61]. The precise connection
between that approach and permissive-upgrade remains unclear, although Buiras et al. sketch
a technique related to permissive-upgrade in their system, while also noting that generalizing
permissive-upgrade to arbitrary lattices is non-obvious. This paper confirms the latter and shows
how it can be done.

7.2. IFC with error handling

Much work on error handling for IFC has been in the context of static analysis [15, 62]. Work
on IFC for dynamic languages has mostly ignored exceptions and other unstructured control flow

Bichhawat et al. / Permissive Runtime IFC 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

constructs [22, 23, 63–65]. Just et al. [52] present dynamic IFC for JavaScript bytecode with
static analysis to determine implicit flows precisely but ignore implicit flows due to exceptions.
Hedin and Sabelfeld propose a dynamic IFC approach for a language modeling the core features of
JavaScript [27] but ignore unstructured control flow constructs like break, continue and return-in-
the-middle for functions. For handling exceptions, they introduce annotations and an additional
class of labels. An extension introduces similar annotations to deal with unstructured control
flow [66]. These labels are more restrictive than needed, e.g., the code indicated by dots in the
snippet: l = 1; while(1) {... if(h) {break;}; l = 0; break;}, is executed irrespective of
the condition h in the first iteration, and thus there is no need to raise the pc before checking that
condition.
Stefan et al. [67] use special constructs to catch exceptions and convert them into normal values

for enforcing IFC in Haskell. Hritcu et al. [68] propose the propagation of exception values as NaNs,
and delay normal and IFC exceptions, changing the semantics of exception handling. Austin et
al. [69] extend faceted execution to work with exceptions by including additional constructs to
raise and catch exceptions. They use big-step semantics to define exception handling while our
formalism uses small-step semantics. Our formalism also supports unstructured control flow, which
is not considered in their semantics.

8. Conclusion

We have presented the design of a sound improvement and generalization of the permissive-
upgrade strategy for dynamic information flow analysis. The development improves the original
strategy’s permissiveness by relaxing the rules for handling partially-leaked data while retaining
soundness. Additionally, the original strategy’s enforcement was limited to a two-point security
lattice; we generalize that to an arbitrary lattice.
We also present a sound approach for improving the precision of runtime information flow anal-

ysis when handling unstructured control flow and exceptions. Existing approaches to handle these
constructs are more conservative and often require additional annotations by the developer. In
contrast, the methodology presented here performs a sound and precise runtime information flow
analysis using post-dominator analysis to handle these features without requiring any additional
annotations from the developer.

Appendix A. Proofs for Improved and Generalized Permissive Upgrade

A.1. Proofs for Improved Permissive Upgrade Strategy

Lemma 1 (Expression Evaluation). If 〈σ1, e〉 ⇓ nk1
1 and 〈σ2, e〉 ⇓ nk2

2 and σ1 ∼ σ2, then nk1
1 ∼ nk2

2 .

Proof. Induction on the derivation and case analysis on the last expression rule.

(1) const: n1 = n2 = n and k1 = k2 = ⊥.
(2) var: As σ1 ∼ σ2, ∀x.σ1(x) = nk1

1 ∼ σ2(x) = nk2
2 .

26 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(3) oper: IH1: If 〈σ1, e1〉 ⇓ n′k
′
1

1 , 〈σ2, e1〉 ⇓ n′k
′
2

2 , σ1 ∼ σ2, then n′k
′
1

1 ∼ n′k
′
2

2 .
IH2: If 〈σ1, e2〉 ⇓ n′′k

′′
1

1 , 〈σ2, e2〉 ⇓ n′′k
′′
2

2 , σ1 ∼ σ2, then n′′k
′′
1

1 ∼ n′′k
′′
2

2 .
T.S. nk1

1 ∼ nk2
2 , where n1 = n′1 � n′′1, n2 = n′2 � n′′2 and k1 = k′1 t k′′1 , k2 = k′2 t k′′2 .

As σ1 ∼ σ2, from IH1 and IH2, n′k
′
1

1 ∼ n′k
′
2

2 and n′′k
′′
1

1 ∼ n′′k
′′
2

2 .
Proof by case analysis on low-equivalence definition (Definition 3) for n′k

′
1

1 ∼ n′k
′
2

2 followed
by case analysis on low-equivalence definition for n′′k

′′
1

1 ∼ n′′k
′′
2

2 .
• n′1 = n′2 and k′1 = k′2 = L:

∗ n′′1 = n′′2 and k′′1 = k′′2 = L: n1 = n2 and k1 = k2 = L

∗ k′′1 = k′′2 = H: k1 = k2 = H

∗ k′′1 = P or k′′2 = P : k1 = P or k2 = P

• k′1 = k′2 = H:
∗ n′′1 = n′′2 and k′′1 = k′′2 = L: k1 = k2 = H

∗ k′′1 = k′′2 = H: k1 = k2 = H

∗ k′′1 = P or k′′2 = P : k1 = H and k2 = H

• k′1 = P or k′2 = P :
∗ n′′1 = n′′2 and k′′1 = k′′2 = L: k1 = P or k2 = P

∗ k′′1 = k′′2 = H: k1 = k2 = H

∗ k′′1 = P or k′′2 = P : k1 = P and/or k2 = P

�

Lemma 2 (Evolution). If pc = H and 〈σ, c〉 ⇓pc σ
′, then ∀x.Γ(σ(x)) = P =⇒ Γ(σ′(x)) = P .

Proof. Proof by induction on the derivation rules and case analysis on the last rule.

• skip,while-f: σ = σ′

• assn-pus: If pc = H and l = P , then k = P . All other σ(x) remain unchanged.
• seq:
IH1: If pc = H and 〈σ, c1〉 ⇓pc σ

′′, then ∀x.Γ(σ(x)) = P =⇒ Γ(σ′′(x)) = P .
IH2: If pc = H and 〈σ′′, c2〉 ⇓pc σ

′, then ∀x.Γ(σ′′(x)) = P =⇒ Γ(σ′(x)) = P .
From IH1 and IH2, if pc = H and 〈σ, c1; c2〉 ⇓pc σ

′, then ∀x.Γ(σ(x)) = P =⇒ Γ(σ′(x)) = P .
• if-else:
IH: If pc = H and 〈σ, ci〉 ⇓pct` σ

′, then ∀x.Γ(σ(x)) = P =⇒ Γ(σ′(x)) = P .
As H t ` = H, from IH.
• while-t: Similar to seq and if-else

�

Lemma 3 (Confinement for improved permissive-upgrade with a two-point lattice). If pc = H
and 〈σ, c〉 ⇓pc σ

′, then σ ∼ σ′.

Proof. Proof by induction on the derivation rules and case analysis on the last step.

• skip,while-f: σ = σ′

Bichhawat et al. / Permissive Runtime IFC 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• assn-pus: If l = L, then k = P else if l = H, then k = H, else if l = P , then k = P . Thus,
σ ∼ σ′

• seq: IH1: If pc = H and 〈σ, c1〉 ⇓pc σ
′′, then σ ∼ σ′′ and

IH2: if pc = H and 〈σ′′, c2〉 ⇓pc σ
′, then σ′′ ∼ σ′.

From Lemma 2, ∀x.Γ(σ(x)) = P =⇒ Γ(σ′′(x)) = P and ∀x.Γ(σ′′(x)) = P =⇒ Γ(σ′(x)) =
P .
From definition, ∀x either:
σ(x) = σ′′(x) and Γ(σ(x)) = Γ(σ′′(x)) = L: From IH2, either σ′′(x) = σ′(x) and Γ(σ′′(x)) =
Γ(σ′(x)) = L or Γ(σ′(x)) = P
or Γ(σ(x)) = Γ(σ′′(x)) = H: From IH2, Γ(σ′′(x)) = Γ(σ′(x)) = H
or either Γ(σ(x)) = P or Γ(σ′′(x)) = P : If Γ(σ(x) = P , then from Lemma 2, Γ(σ′′(x) = P .
Hence, Γ(σ′(x)) = P .
• if-else: IH: If pc = H and 〈σ, ci〉 ⇓pct` σ

′, then σ ∼ σ′. If pc = H, then H t ` = H. Thus,
from IH.
• while-t: Similar to if-else and seq.

�

Theorem 1 (TINI for improved permissive-upgrade with a two-point lattice). With the assign-
ment rule assn-pus and the modified syntax of Figure 4, if σ1 ∼ σ2 and 〈σ1, c〉 ⇓pc σ′1 and
〈σ2, c〉 ⇓pc σ

′
2, then σ′1 ∼ σ′2.

Proof. Proof by induction on the derivation rules and case analysis on the last step.

• skip,while-f: σ′1 = σ1 ∼ σ2 = σ′2
• assn-pus: From Lemma 1, nm1

1 ∼ nm2
2 . If pc = L, then k = m. If pc = H and l = H, then

k1 = k2 = H. If pc = H and l = L, then k1 = k2 = P . Hence, σ′1 ∼ σ′2.
• seq: IH1: If σ1 ∼ σ2 and 〈σ1, c1〉 ⇓pc σ

′
1, and 〈σ2, c1〉 ⇓pc σ

′
2, then σ′1 ∼ σ′2 and

IH2: If σ′1 ∼ σ′2 and 〈σ′1, c2〉 ⇓pc σ
′′
1 , and 〈σ′2, c2〉 ⇓pc σ

′′
2 , then σ′′1 ∼ σ′′2 .

From IH1 and IH2, σ′′1 ∼ σ′′2
• if-else: IH: If σ1 ∼ σ2 and 〈σ1, ci〉 ⇓pct`1 σ′1, and 〈σ2, cj〉 ⇓pct`2 σ′2, and `1 = `2, and
ci = cj then σ′1 ∼ σ′2. From Lemma 1, nl1

1 ∼ nl2
2 . Thus, either `1 = `2 = L or `1 = `2 = H. If

`1 = `2 = L, then n1 = n2. Thus, ci = cj and hence, from IH σ′1 ∼ σ′2.
If `1 = `2 = H, then pc tH = H. From Lemma 3, σ1 ∼ σ′1 and σ2 ∼ σ′2, and σ1 ∼ σ2.
T.S. σ′1 ∼ σ′2, i.e., ∀x.σ′1(x) ∼ σ′2(x).
Let σ1(x) = nk1

1 and σ2(x) = nk2
2 and σ′1(x) = n′1

k′
1 and σ′2(x) = n′2

k′
2 . Case analysis on the

definition of equivalence:
∗ n1 = n2 and k1 = k2 = L: Either n′1 = n1 and k′1 = k1 = L and n′2 = n2 and k′2 = k2 = L
or k′1 = P or k′2 = P

∗ k1 = k2 = H: k′1 = k1 = H and k′2 = k2 = H
∗ k1 = P or k2 = P : From Lemma 2, k′1 = P or k′2 = P

• while-t: Similar to if-else and seq.

�

28 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

A.2. Examples for Equivalence Definition

Consider the following notations for the examples:
l, m, h, l? represent any variable with label L, M , H, L?, respectively, such that L vM v H.
An `-level adversary is assumed. ` represents the labels that are above the level of the attacker.
Table A.1 shows example programs for the transition from low-equivalent values to low-

equivalent values. First column and first row of the table represents all the possible ways in
which two values can be low-equivalent (from defintion 7).

A.3. Proofs and Results for Generalized Permissive Upgrade for Arbitrary Lattices

Lemma 4. Expression Evaluation Lemma
If σ1 ∼` σ2,
〈σ1, e〉 ⇓ nk1

1 ,
〈σ2, e〉 ⇓ nk2

2 ,
then nk1

1 ∼` nk2
2 .

Proof. Proof by induction on the derivation and case analysis on the last expression rule.

(1) const: n1 = n2 = n and k1 = k2 =⊥.
(2) var: As σ1 ∼` σ2, ∀x.σ1(x) = nk1

1 ∼` σ2(x) = nk2
2 .

(3) oper: IH1: If 〈σ1, e1〉 ⇓ n′k
′
1

1 , 〈σ2, e1〉 ⇓ n′k
′
2

2 , σ1 ∼` σ2, then n′k
′
1

1 ∼` n′k
′
2

2 .
IH2: If 〈σ1, e2〉 ⇓ n′′k

′′
1

1 , 〈σ2, e2〉 ⇓ n′′k
′′
2

2 , σ1 ∼` σ2, then n′′k
′′
1

1 ∼` n′′k
′′
2

2 .
T.S. nk1

1 ∼` nk2
2 , where n1 = n′1 � n′′1, n2 = n′2 � n′′2 and k1 = k′1 t k′′1 , k2 = k′2 t k′′2 .

As σ1 ∼` σ2, from IH1 and IH2, n′k
′
1

1 ∼` n′k
′
2

2 and n′′k
′′
1

1 ∼` n′′k
′′
2

2 .
Proof by case analysis on low-equivalence definition for n′k

′
1

1 ∼` n′k
′
2

2 followed by case analysis
on low-equivalence definition for n′′k

′′
1

1 ∼` n′′k
′′
2

2 .

�

Lemma 5. ?-preservation Lemma
∀x.If 〈σ, c〉 ⇓pc σ

′, Γ(σ(x)) = `? and pc 6v `, then Γ(σ′(x)) = `′? ∧ `′ v `

Proof. Proof by induction on the derivation and case analysis on the last rule.

(1) skip : σ = σ′.
(2) assn-n: As pc 6v `, these cases do not apply.
(3) assn-s: From the premises, for x in statement c, Γ(σ′(x)) = ((pc t m) u `)? = `′. Thus,

`′ v `.
For any other y, σ(y) = σ′(y). Thus, `′ = `.

(4) seq : IH1 : ∀x.If 〈σ, c〉 ⇓pc σ
′′, Γ(σ(x)) = `? and pc 6v `, then Γ(σ′′(x)) = `′′? ∧ `′′ v `

IH2 : ∀x.If 〈σ′′, c〉 ⇓pc σ
′, Γ(σ′′(x)) = `′′? and pc 6v `′′, then Γ(σ′(x)) = `′? ∧ `′ v `′′

Thus, from IH1 and IH2, Γ(σ′(x)) = `′? ∧ `′ v `.

Bichhawat et al. / Permissive Runtime IFC 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

`, ` `1
?, `2 `1, `2

? `1
?, `2

? `1, `2 `1
?, `2 `1, `2

?

`, ` - if(h)
x1 = l

if(h)
x1 = l

if(h)
x1 = l

else
x1 = l

x1 = h

x1 = m
if(h)
x1 = 4

if(m)
x1 = l?

x1 = m
if(h)
x1 = 4

if(m)
x1 = l?

`1
?, `2 x1 = l -

x1 = l
if(h)

x1 = l

if(h)
x1 = l

x1 = h

x1 = m
if (h)

x1 = l
if(m)

x1 = l?

x1 = m
if (h)

x1 = l
if(m)

x1 = l?

`1, `2
? x1 = l

x1 = l
if(h)

x1 = l

- if(h)
x1 = l

x1 = h

x1 = m
if (h)

x1 = l
if(m)

x1 = l?

x1 = m
if (h)

x1 = l
if(m)

x1 = l?

`1
?, `2

? x1 = l
x1 = l
if (h)
x1 = l

x1 = l
if (h)
x1 = l

- x1 = h

x1 = m
if (h)
x1 = l

if (m)
x1 = l?

x1 = m
if (h)
x1 = l

if (m)
x1 = l?

`1, `2 x1 = l
x1 = l
if (h)

x1 = l

x1 = l
if (h)

x1 = l

x1 = l
if (h)

x1 = l
else

x1 = l

-

x1 = m
if (h)

x1 = l
if(m)

x1 = l?

x1 = m
if (h)
x1 = l

if (m)
x1 = l?

`1
?, `2 x1 = l

x1 = l
if (h)

x1 = l

x1 = l
if (h)

x1 = l

x1 = l
if (h)

x1 = l
else

x1 = l

x1 = h -

x1 = m
if (h)
x1 = l

if (m)
x1 = l?

`1, `2
? x1 = l

x1 = l
if (h)

x1 = l

x1 = l
if (h)

x1 = l

x1 = l
if (h)

x1 = l
else

x1 = l

x1 = h

x1 = m
if (h)

x1 = l
if(m)

x1 = l?

-

Table A.1
Examples for all possible transitions of low-equivalent to low-equivalent values

(5) if-else: Let k = `′′.
IH: ∀x.If 〈σ, c〉 ⇓pct`′′ σ′, Γ(σ(x)) = `? and pc t `′′ 6v `, then Γ(σ′(x)) = `′? ∧ `′ v `
As pc 6v `, so pc t `′′ 6v `.
Thus from IH, Γ(σ′(x)) = `′? ∧ `′ v `

(6) while-t: Let k = `e.
IH1: ∀x.If 〈σ, c〉 ⇓pct`e σ

′′, Γ(σ(x)) = `? and pc t `e 6v `, then Γ(σ′′(x)) = `′′? ∧ `′′ v `
IH2: ∀x.If 〈σ′′, c〉 ⇓pct`e σ

′, Γ(σ′′(x)) = `′′? and pc t `e 6v `, then Γ(σ′(x)) = `′? ∧ `′ v `

30 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

As pc 6v `, so pc t `e 6v `.
Thus from IH1 and IH2, Γ(σ′(x)) = `′? ∧ `′ v `

(7) while-f : σ = σ′.

�

Corollary 1. If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ(x)) = `? and Γ(σ′(x)) = `′, then pc v `.

Proof. Immediate from Lemma 5. �

Lemma 6. pc Lemma
If 〈σ, c〉 ⇓pc σ

′, then ∀x.Γ(σ′(x)) = ` =⇒ (σ(x) = σ′(x)) ∨ pc v `.

Proof. Proof by induction on the derivation and case analysis on the last rule.

• skip: σ(x) = σ′(x).
• assn-n: For x in the statement c, by premises, ` = pc t `e. Thus, pc v `.
For any other y s.t. Γ(σ′(y)) = `′, σ(y) = σ′(y). For assn-s, case does not apply.
• seq: IH1: If 〈σ, c1〉 ⇓pc σ

′′, then ∀x.Γ(σ′′(x)) = `′′ =⇒ (σ(x) = σ′′(x)) ∨ pc v `′′.
IH2: If 〈σ′′, c2〉 ⇓pc σ

′, then ∀x.Γ(σ′(x)) = ` =⇒ (σ′′(x) = σ′(x)) ∨ pc v `.
From IH2, if σ′′(x) 6= σ′(x), then pc v `.
If σ′′(x) = σ′(x), then from IH1:

∗ If σ(x) = σ′′(x): σ(x) = σ′(x).
∗ If σ(x) 6= σ′′(x): pc v `′′, where `′′ = Γ(σ′′(x)). As σ′′(x) = σ′(x), `′′ = Γ(σ′(x)) = `.
Thus, pc v `.

• if-else: IH: If 〈σ, c〉 ⇓pct`e σ
′, then ∀x.Γ(σ′(x)) = ` =⇒ (σ(x) = σ′(x)) ∨ pc t `e v `.

From IH, either (σ(x) = σ′(x)) or pc t `e v `. Thus, (σ(x) = σ′(x)) ∨ pc v `.
• while-t: IH1: If 〈σ, c〉 ⇓pct`e σ

′′, then ∀x.Γ(σ′′(x)) = `′′ =⇒ (σ(x) = σ′′(x)) ∨ pc v `′′.
IH2: If 〈σ′′, c〉 ⇓pct`e σ

′, then ∀x.Γ(σ′(x)) = ` =⇒ (σ′′(x) = σ′(x)) ∨ pc v `.
From similar reasoning as in “seq”, either σ(x) = σ′(x) or pc t `e v `. Thus, σ(x) =
σ′(x) ∨ pc v `.
• while-f: σ(x) = σ′(x).

�

Corollary 2. If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ(x)) = `? and Γ(σ′(x)) = `′, then pc v `′.

Proof. Immediate from Lemma 6. �

Lemma 7. Confinement Lemma If pc 6v `, 〈σ, c〉 ⇓pc σ
′, then σ ∼` σ

′.

Proof. Proof by induction on the derivation and case analysis on the last rule.

(1) skip : σ = σ′.

Bichhawat et al. / Permissive Runtime IFC 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(2) assn-n: Let xi = vki
i and xf = vkf

f , s.t ki = `i ∨ ki = `i
? and pc v `i : As pc 6v `, `i 6v `.

By premises of assn-n, kf = `f ∨ kf = `f
?, where `f = pc t `e. As pc 6v `, `f 6v `. Thus, by

definition 7.2, 7.3, 7.4 or 7.5, xi ∼` xf .
(3) assn-s: Let xi = vki

i and xf = vkf

f , s.t ki = `i ∨ ki = `i
? and pc 6v `i : By premise,

kf = ((pc tm) u `i)?. Thus, `f v `i and by definition 7.3 or 7.5 xi ∼` xf .
(4) seq : IH1: σ ∼` σ

′′ and IH2: σ′′ ∼` σ
′. T.S : σ ∼` σ

′.
For all x ∈ dom(σ), respective x′′ ∈ dom(σ′′) and respective x′ ∈ dom(σ′), x ∼` x′′ and
x′′ ∼` x′.
To show: x ∼` x′.
Let x = vk1

1 , x′′ = vk2
2 , x′ = vk3

3 , where k1 = `1 ∨ k1 = `1
?, k2 = `2 ∨ k2 = `2

? and
k3 = `3 ∨ k3 = `3

?.
Case-analysis on definition 7 for IH1.
• (k1 = k2) = `′ v ` ∧ v1 = v2 : By IH2 and definition 7,

(a) (k2 = k3) = `′ v ` ∧ v2 = v3 (case 1): Transitivity of equality, (k1 = k3) = `′ v
` ∧ v1 = v3. Thus, x ∼` x′.

(b) k2 = `′ and k3 = `3
? ∧ `3 v `′ v ` (case 5): By definition 7.5 x ∼` x′.

• k1 = `1 6v ` ∧ k2 = `2 6v `: By IH2, either
(a) k2 = `2 6v ` ∧ k3 = `3 6v `. By definition 7.2, x ∼` x′.
(b) k2 = `2 6v ` ∧ k3 = `3

?: `1 6v `. Thus, by definition 7.5, x ∼` x′.
• k1 = `1

? ∧ k2 = `2
?: By IH2,

(a) k2 = `2
? ∧ k3 = `3

? (case 3): By definition 7.3, x ∼` x′.
(b) k2 = `2

? ∧ k3 = `3 ∧ (`3 6v `) (case 4): By definition 7.4, x ∼` x′.
(c) k2 = `2

? ∧ k3 = `3 ∧ (`2 v `3) (case 4): By corollary 1, pc v `2. As pc 6v ` and
`2 v `3, so `3 6v `. By definition 7.4, x ∼` x′. .

• k1 = `1
? ∧ k2 = `2 s.t. (`2 6v `) (case 4): Either

∗ k2 = `2 6v ` ∧ k3 = `3 6v `: By definition 7.4, x ∼` x′.
∗ k2 = `2 6v ` ∧ k3 = `3

?: By definition 7.3, x ∼` x′.
• k1 = `1

? ∧ k2 = `2 s.t. (`1 v `2) (case 4):
∗ k2 = k3 = `2: By definition 7.4, x ∼` x′.
∗ k2 = `2 6v ` ∧ k3 = `3 6v `: By definition 7.4, x ∼` x′.
∗ k2 = `2 6v ` ∧ k3 = `3

?: By definition 7.3, x ∼` x′.
• k1 = `1 ∧ k2 = `2

? s.t. (`1 6v `): By IH2,
(a) k2 = `2

? ∧ k3 = `3
? (case 3): By definition 7.5, x ∼` x′.

(b) k2 = `2
? ∧ k3 = `3 s.t. (`3 6v `) (case 4): By definition 7.2, x ∼` x′.

(c) k2 = `2
? ∧ k3 = `3 s.t. (`2 v `3) (case 4): By corollary 1, pc v `2. As pc 6v ` and

`2 v `3, so `3 6v `. By definition 7.2, x ∼` x′.
• k1 = `1 ∧ k2 = `2

? s.t. (`2 v `1): Also, (`2 v `1 v `). By IH2,
(a) k2 = `2

? ∧ k3 = `3
? (case 3): As `2 v ` and pc 6v `, pc 6v `2. By lemma 5, `3 v `2.

Thus, `3 v `2 v `1. By definition 7.5, x ∼` x′.
(b) k2 = `2

? ∧ k3 = `3 (case 4): As `2 v ` and pc 6v `, pc 6v `2. But, by corollary 1,
pc v `2. By contradiction, this case does not hold.

32 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(5) if-else : IH : k = `′. If (pc t `′) 6v `, then σ ∼` σ
′.

As pc 6v `, pc t `′ 6v `. Thus, by IH, σ ∼` σ
′.

(6) while-t: IH1 : k = `′. If (pc t `′) 6v `, then σ ∼` σ
′.

As pc 6v `, pc t `′ 6v `. Thus, by IH1, σ ∼` σ
′′.

IH2 : k = `′. If (pc t `′) 6v `, then σ′ ∼` σ
′′.

As pc 6v `, pc t `′ 6v `. Thus, by IH, σ′′ ∼` σ
′.

Therefore, σ ∼` σ
′′ and σ′′ ∼` σ

′.
(Reasoning similar to seq.)

(7) while-f : σ = σ′

�

Theorem 2. Termination-insensitive non-interference
If σ1 ∼` σ2, 〈σ1, c〉 ⇓pc σ

′
1, 〈σ2, c〉 ⇓pc σ

′
2, then σ′1 ∼` σ

′
2.

Proof. By induction on the derivation and case analysis on the last step

(1) skip: σ′1 = σ1 ∼` σ2 = σ′2
(2) assn-n and assn-s: As σ1 ∼` σ2, ∀x.σ1(x) ∼` σ2(x). Let σ1(x) = vk1

1 , σ2(x) = vk2
2 and

σ′1(x) = v′k
′
1

1 , σ′2(x) = v′k
′
2

2
s. t. ki = `i ∨ ki = `i

? and k′i = `′i ∨ ki = `′i
? for i = 1, 2.

Let 〈e1, σ1〉 ⇓ w
ke

1
1 ∧ 〈e2, σ2〉 ⇓ w

ke
2

2
s. t. ke

i = `e
i ∨ ke

i = `e
i
? for i = 1, 2. For low-equivalence of e1 and e2, the following cases

arise:
(a) ke

i = `e
i , s.t. (`e

1 = `e
2) = `e v ` ∧ w1 = w2:

i. pc 6v `1∧pc 6v `2: By premise of assn-s rules, k′i = ((pct`e)u`i)?. By definition 7.3,
σ′1 ∼` σ

′
2.

ii. pc 6v `1∧pc v `2: k′1 = ((pct`e)u`1)? and k′2 = pct`e. As `′1 v `′2, by definition 7.4,
σ′1 ∼` σ

′
2.

iii. pc v `1∧pc 6v `2: k′2 = ((pct`e)u`2)? and k′1 = pct`e. As `′2 v `′1, by definition 7.5,
σ′1 ∼` σ

′
2.

iv. pc v `1 ∧ pc v `2: k′1 = pc t `e and k′2 = pc t `e. If pc v ` and `e v ` and w1 = w2,
by definition 7.1, σ′1 ∼` σ

′
2. If pc 6v `, pc t `e 6v `. By definition 7.2, σ′1 ∼` σ

′
2.

(b) `e
1 6v `∧ `e

2 6v `: From premise of assignment rules, k′1 = pc t `e
1 ∨ k′1 = (pc t `e

1)? ∨ k′1 =
((pc t `e

1)u `1)?. Similarly, k′2 = pc t `e
2 ∨ k′2 = (pc t `e

2)? ∨ k′2 = ((pc t `e
2)u `2)?. Since

`e
1 6v ` and `e

2 6v `, pc t `e
1 6v ` and pc t `e

1 6v `. Therefore, from Definition 7.2, 7.3, 7.4
or 7.5 σ′1 ∼` σ

′
2.

(c) ke
i = `e

i
?: By premise of assn-s rules, k′i = ((pc t `e

i) u `i)? or k′i = (pc t `e
i)?. By

definition 7.3, σ′1 ∼` σ
′
2.

(d) ke
1 = `e

1
? ∧ ke

2 = `e
2:

i. pc 6v `1∧pc 6v `2: By premise of assn-s rules, k′i = ((pct`e
i)u`i)?. By definition 7.3,

σ′1 ∼` σ
′
2.

ii. pc 6v `1 ∧ pc v `2: k′1 = ((pc t `e
1) u `1)? and k′2 = pc t `e

2. From definition 7.4,
`e

1 v `e
2, so (pc t `e

i) u `1 v pc t `e
2. By definition 7.4, σ′1 ∼` σ

′
2.

Bichhawat et al. / Permissive Runtime IFC 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

iii. pc v `1 ∧ pc 6v `2: k′2 = ((pc t `e
2) u `2)? and k′1 = (pc t `e

1)?. By definition 7.3,
σ′1 ∼` σ

′
2.

iv. pc v `1 ∧ pc v `2: k′1 = (pc t `e
1)? and k′2 = pc t `e

2. If `e
2 6v `, so pc t `e

2 6v `. Else
if `e

1 v `e
2, then pc t `e

1 v pc t `e
2. By definition 7.4, σ′1 ∼` σ

′
2.

(e) ke
1 = `e

1 ∧ ke
2 = `e

2
?:

i. pc 6v `1∧pc 6v `2: By premise of assn-s rules, k′i = ((pct`e
i)u`i)?. By definition 7.3,

σ′1 ∼` σ
′
2.

ii. pc 6v `1 ∧ pc v `2: k′1 = ((pc t `e
1) u `1)? and k′2 = (pc t `e

2)?. By definition 7.3,
σ′1 ∼` σ

′
2.

iii. pc v `1 ∧ pc 6v `2: k′1 = pc t `e
1 and k′2 = ((pc t `e

2) u `2)?. (pc t `e
2) u `2 v pc t `e

1.
By definition 7.5, σ′1 ∼` σ

′
2.

iv. pc v `1 ∧ pc v `2: k′1 = (pc t `e
1)? and k′2 = pc t `e

2. If `e
1 6v `, so pc t `e

1 6v `. Else
if `e

2 v `e
1, then pc t `e

2 v pc t `e
1. By definition 7.5, σ′1 ∼` σ

′
2.

(3) seq: IH1: If σ1 ∼` σ2 then σ′′1 ∼` σ
′′
2

IH2: If σ′′1 ∼` σ
′′
2 then σ′1 ∼` σ

′
2

Since σ1 ∼` σ2, therefore, from IH1 and IH2 σ′1 ∼` σ
′
2.

(4) if-else: IH: If σ1 ∼` σ2, 〈σ1, c〉 ⇓pct`e
1
σ′1, 〈σ2, c〉 ⇓pct`e

2
σ′2 and pc t `e

1 = pc t `e
2 then

σ′1 ∼` σ
′
2.

• If `e
1 v `, `e

1 = `e
2 and n1 = n2. By IH, σ′1 ∼` σ

′
2.

• If `e
1 6v `, then `e

2 6v `, pc t `e
i 6v ` for i = 1, 2. By Lemma 7, σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2.

T.S. σ′1 ∼` σ
′
2, i.e., (∀x.σ′1(x) ∼` σ

′
2(x))

Case analysis on the definition of low-equivalence of values, x, in σ1 and σ2. Let σ1(x) =
vk1

1 and σ2(x) = vk2
2 and σ′1(x) = v′k

′
1

1 and σ′2(x) = v′k
′
2

2
(a) (k1 = k2) = `′ v ` ∧ v1 = v2 = v:

∗ If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by definition 7.1,
`′ = `′1∧v = v′1 and `′ = `′2∧v = v′2. Thus, `′1 = `′2∧v′1 = v′2, so σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2, by definition 7.5

`′1 v `1 = `′ and by definition 7.1 k′2 = `′2 = `2 = `′. So, `′1 v `′2. By
definition 7.4, σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2,by definition 7.1

k′1 = `′1 = `1 = `′ and by definition 7.5 `′2 v `2 = `′. So, `′2 v `′1. By
definition 7.5, σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2

?, then by definition 7.3, σ′1(x) ∼` σ
′
2(x).

(b) (k1 = `1 6v `) ∧ (k2 = `2 6v `):
∗ If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by definition 7.2,

(k′1 = `′1 6v `) ∧ (k′2 = `′2 6v `). So, σ′1(x) ∼` σ
′
2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2, by definition 7.2

k′2 = `′2 6v `. By definition 7.4, σ′1(x) ∼` σ
′
2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2,by definition 7.2

k′1 = `′1 6v `. By definition 7.5, σ′1(x) ∼` σ
′
2(x). If k′1 = `′1

? ∧ k′2 = `′2
?, then by

definition 7.3, σ′1(x) ∼` σ
′
2(x).

(c) (k1 = `1
? ∧ k2 = `2

?) :

34 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

∗ If k′1 = `′1
? ∧ k′2 = `′2

?, by definition 7.3, σ′1(x) ∼` σ
′
2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2,by corollary 2, pct`e

1 v `′1.
As pc t `e

1 6v ` and by definition 7.2, `′1 6v `. By definition 7.5, σ′1(x) ∼` σ
′
2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 2,

pc t `e
2 v `′2. As pc t `e

2 6v ` and by definition 7.2, `′2 6v `. By definition 7.4,
σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1∧k′2 = `′2, then as σ1 ∼` σ
′
1 and σ2 ∼` σ

′
2, by corollary 2, pct `e

1 v `′1
and pc t `e

2 v `′2. As pc t `e
i 6v ` and by definition 7.2, `′1 6v ` and `′2 6v `. By

definition 7.2, σ′1(x) ∼` σ
′
2(x).

(d) (k1 = `1
? ∧ k2 = `2):

∗ `2 6v ` :
∗ If k′1 = `′1

? ∧ k′2 = `′2
?, by definition 7.3, σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2,by corollary 2,

pc t `e
1 v `′1. As pc t `e

1 6v ` and by definition 7.2, `′1 6v `. By definition 7.5,
σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2, by definition 7.2,

`′2 6v `. By definition 7.4, σ′1(x) ∼` σ
′
2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 2,
pc t `e

1 v `′1. As pc t `e
1 6v ` and by definition 7.2, `′1 6v `. By definition 7.2,

`′2 6v `. By definition 7.2, σ′1(x) ∼` σ
′
2(x).

∗ `1 v `2 v ` :
∗ If k′1 = `′1

? ∧ k′2 = `′2
?, by definition 7.3, σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2, by corollary 2,

pc t `e
1 v `′1. As pc t `e

1 6v `, and by definition 7.2, `′1 6v `. By definition 7.5,
σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2, `′1 v (pc t `e

1) u `1 as
pc t `e

1 6v `1 and `′2 = `2 by corollary 1 and definition 7.1. Thus, `′1 v `′2. By
definition 7.4, σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 1,
pc t `e

1 v `1. As pc t `e
1 6v `, by contradiction the case does not hold.

(e) (k1 = `1 ∧ k2 = `2
?):

∗ `1 6v ` :
∗ If k′1 = `′1

? ∧ k′2 = `′2
?, by definition 7.3, σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2,by corollary 2,

pc t `e
2 v `′2. As pc t `e

2 6v ` and by definition 7.2, `′2 6v `. By definition 7.5,
σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2, by definition 7.2,

`′1 6v `. By definition 7.4, σ′1(x) ∼` σ
′
2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 2,
pc t `e

2 v `′2. As pc t `e
2 6v ` and by definition 7.2, `′2 6v `. By definition 7.2,

`′1 6v `. By definition 7.2, σ′1(x) ∼` σ
′
2(x).

∗ `2 v `1 :

Bichhawat et al. / Permissive Runtime IFC 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

∗ If k′1 = `′1
? ∧ k′2 = `′2

?, by definition 7.3, σ′1(x) ∼` σ
′
2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2, `′2 v (pc t `e

2) u `2 as
pc t `e

2 6v `2 and `′1 = `1 by corollary 1 and definition 7.1. Thus, `′2 v `′1. By
definition 7.5, σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ

′
1 and σ2 ∼` σ

′
2, by corollary 2,

pc t `e
2 v `′2. As pc t `e

2 6v `, and by definition 7.2, `′2 6v `. By definition 7.4,
σ′1(x) ∼` σ

′
2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 1,
pc t `e

2 v `2. As pc t `e
2 6v `, by contradiction the case does not hold.

(5) while-t: IH1: If σ1 ∼` σ2, 〈σ1, c〉 ⇓pct`e
1
σ′′1 , 〈σ2, c〉 ⇓pct`e

2
σ′′2 and pc t `e

1 = pc t `e
2 then

σ′′1 ∼` σ
′′
2 .

IH2: If σ′′1 ∼` σ
′′
2 , 〈σ′′1 , c〉 ⇓pct`e

1
σ′1, 〈σ′′2 , c〉 ⇓pct`e

2
σ′2 and pc t `e

1 = pc t `e
2 then σ′1 ∼` σ

′
2.

• If `e
1 v `, `e

1 = `e
2 and n1 = n2. By IH1 and IH2, σ′1 ∼` σ

′
2.

• If `e
1 6v `, then `e

2 6v `, pc t `e
i 6v ` for i = 1, 2. By Lemma 7, σ1 ∼` σ

′′
1 and σ2 ∼` σ

′′
2 .

T.S. σ′′1 ∼` σ
′′
2 : By similar reasoning as if-else.

As σ′′1 ∼` σ
′′
2 , and by Lemma 7, σ′′1 ∼` σ

′
1 and σ′′2 ∼` σ

′
2.

T.S. σ′1 ∼` σ
′
2: By similar reasoning as if-else.

(6) while-f: σ′1 = σ1 ∼` σ2 = σ′2

�

Appendix B. Proofs for IFC with Unstructured Control Flow and Exceptions

Lemma 8 (Confinement Lemma). If 〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉 and Γ(!ρ) 6v `, then σ ∼` σ
′, and

ρ ∼` ρ
′.

Proof. Γ(!ρ) = pc in the proof that follows.
As pc 6v `, the nodes in the pc-stack that have label less than or equal to ` will remain unchanged.
Branching instructions pushing a new node would have label of at least pc due to monotonicity of
pc-stack. Even if ι′ is the IPD corresponding to the !ρ.ipd, it would only pop the top node. Thus,
all the nodes that have label less than or equal to ` will remain unchanged. Hence, ρ ∼` ρ

′.
To show: σ ∼` σ

′.
By case analysis on the instruction type:

• assn, catch: Similar to cases assn-n and assn-s of Lemma 7.
• branch, jmp, ret, sen, throw: σ = σ′

�

Lemma 9. If 〈σ0, ι0, ρ0〉 →n 〈σn, ιn, ρn〉 and ∀(0 6 i 6 n).Γ(!ρi) 6v `, then ρ0 ∼` ρn

Proof. Proof by induction on n.
Basis: ρ0 ∼` ρ0
IH : ρ0 ∼` ρn−1

36 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

From Definition 14, all nodes labeled less than or equal to ` of ρ0 and ρn−1 are equal. From
Lemma 8, ρn−1 ∼ ρn so, all nodes labeled less than or equal to ` of ρn−1 and ρn are equal. Thus,
all nodes labeled less than or equal to ` of ρ0 and ρn are equal and by Definition 14, ρ0 ∼ ρn. �

Lemma 10. ?-preservation Lemma
If 〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉,
then ∀x.Γ(σ(x)) = `? ∧ (Γ(!ρ) 6v `) =⇒ Γ(σ′(x)) = `′? ∧ `′ v `

Proof. Proof by case analysis on the instruction type:

• assn, catch: from the premise
• branch, jmp, ret, sen, throw: σ = σ′

�

Corollary 3. If 〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉, and Γ(σ(x)) = `? and Γ(σ′(x)) = `′, then Γ(!ρ) v `.

Proof. Immediate from Lemma 10. �

Lemma 11. If 〈σ0, ι0, ρ0〉 →? 〈σn, ιn, ρn〉 and ∀(0 6 i 6 n).Γ(!ρi) 6v `, then σ0 ∼` σn

Proof. By induction on n.
Basis: σ0 ∼` σ0 by Definition 8.
IH: σ0 ∼` σn−1.
From IH and Definition 8, ∀x.(σ0(x) ∼` σn−1(x). From Lemma 8, σn−1 ∼` σn. Thus,
∀x.(σn−1(x) ∼` σn(x)
Assume that σ0(x) = vk

0, σn−1(x) = vk′
n−1, and σn(x) = vk′′

n either:

• (k = k′) = `′ v ` ∧ v0 = vn−1 :
(1) (k′ = k′′) = `′ v ` ∧ vn−1 = vn: (k = k′′) = `′ v ` ∧ v0 = vn. Thus, σ0(x) ∼` σn(x).
(2) k′ = `′ and k′′ = `′′? ∧ `′′ v `′ v `: By definition 7.5. Thus, σ0(x) ∼` σn(x).

• k = `1 6v ` ∧ k′ = `2 6v `:
(1) k′ = `2 6v ` ∧ k′′ = `3 6v `. By definition 7.2, σ0(x) ∼` σn(x).
(2) k′ = `2 6v ` ∧ k′′ = `3

?: `1 6v `. Thus, by definition 7.5, σ0(x) ∼` σn(x).
• k = `1

? ∧ k′ = `2
?:

(1) k′ = `2
? ∧ k′′ = `3

?: By definition 7.3, σ0(x) ∼` σn(x).
(2) k′ = `2

? ∧ k′′ = `3 ∧ (`3 6v `): By definition 7.4, σ0(x) ∼` σn(x).
(3) k′ = `2

? ∧ k′′ = `3 ∧ (`2 v `3): By corollary 3, Γ(!ρn−1) v `2. As Γ(!ρn−1) 6v ` and
`2 v `3, so `3 6v `. By definition 7.4, σ0(x) ∼` σn(x).

• k = `1
? ∧ k′ = `2 s.t. (`2 6v `): Either

∗ k′ = `2 6v ` ∧ k′′ = `3 6v `: By definition 7.4, σ0(x) ∼` σn(x)
∗ k′ = `2 6v ` ∧ k′′ = `3

?: By definition 7.3, σ0(x) ∼` σn(x)
• k = `1

? ∧ k′ = `2 s.t. (`1 v `2):
∗ k′ = k′′ = `2: By definition 7.4, σ0(x) ∼` σn(x)

Bichhawat et al. / Permissive Runtime IFC 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

∗ k′ = `2 6v ` ∧ k′′ = `3 6v `: By definition 7.4, σ0(x) ∼` σn(x)
∗ k′ = `2 6v ` ∧ k′′ = `3

?: By definition 7.3, σ0(x) ∼` σn(x)
• k = `1 ∧ k′ = `2

? s.t. (`1 6v `):
(1) k′ = `2

? ∧ k′′ = `3
?: By definition 7.5, σ0(x) ∼` σn(x)

(2) k′ = `2
? ∧ k′′ = `3 s.t. (`3 6v `): By definition 7.2, σ0(x) ∼` σn(x)

(3) k′ = `2
?∧k′′ = `3 s.t. (`2 v `3) : By corollary 3, Γ(!ρn) v `2. As Γ(!ρn) 6v ` and `2 v `3,

so `3 6v `. By definition 7.2, σ0(x) ∼` σn(x).
• k = `1 ∧ k′ = `2

? s.t. (`2 v `1): Also, (`2 v `1 v `).
(1) k′ = `2

? ∧ k′′ = `3
?: As `2 v ` and Γ(!ρn) 6v `, Γ(!ρn) 6v `2. By lemma 10, `3 v `2.

Thus, `3 v `2 v `1. By definition 7.5, σ0(x) ∼` σn(x)
(2) k′ = `2

?∧k′′ = `3: As `2 v ` and Γ(!ρn) 6v `, Γ(!ρn) 6v `2. But, by Lemma 9, Γ(!ρn) v `2.
By contradiction, this case does not hold.

�

Lemma 12. Suppose
〈σ1, ι, ρ1〉 → 〈σ′1, ι′1, ρ′1〉,
〈σ2, ι, ρ2〉 → 〈σ′2, ι′2, ρ′2〉,
σ1 ∼` σ2, ρ1 ∼` ρ2, Γ(!ρ1) = Γ(!ρ2) v `, and either Γ(!ρ′1) = Γ(!ρ′2) v `) or Γ(!ρ′1) 6v `∧Γ(!ρ′2) 6v `)
then σ′1 ∼` σ

′
2 and ρ′1 ∼` ρ

′
2.

Proof. Every instruction executes isIPD at the end of the operation. If ι′i is the IPD corresponding
to the !ρi.ipd, then it pops the first node on the pc-stack. As ρ1 ∼ ρ2 and Γ(!ρ1) = Γ(!ρ2), ι′i would
either pop in both the runs or in none. Thus, ρ′1simρ′2 (branch rule is explained below).
Assume σ1(x) = vk1

1 , σ2(x) = vk2
2 , σ′1(x) = v

k′
1

1′ and σ′2(x) = v
k′

2
2′ .

Proof by case analysis on the instruction type:

• assn, catch: Γ(!ρ1) = Γ(!ρ2) = pc v `

∗ pc v `1 ∧ pc v `2: As nm is equivalent, σ′1(x) ∼` σ
′
2(x).

∗ pc 6v `1 ∧ pc 6v `2: By Definition 7.3, σ′1(x) ∼` σ
′
2(x).

∗ pc v `1 ∧ pc 6v `2: k′2 v pc and pc v k′1. By Definition 7.3 and 7.4, σ′1(x) ∼` σ
′
2(x).

Similarly for the analogous case.
• branch: As b`i is equivalent in the two runs, either `1 = `2 v ` or `1 6v ` ∧ `2 6v ` (`i does
not have ?). The IPD of ι would be the same in both the cases. If the IPD is SEN, then the
label of !ρi is joined with the label obtained above, which is either less than or equal to `
and same in both the runs (or) not less than or equal to ` in both the runs. Thus, either
Γ(!ρ′1) = Γ(!ρ′2) or Γ(!ρ′1) 6v ` ∧ Γ(!ρ′2) 6v `. Because ρ1 ∼ ρ2, ρ′1 ∼` ρ

′
2.

If the IPD is not SEN, then it is some other node, which makes the ipd field the same. Thus,
the pushed node is the same in both the cases or has label not less than or equal to ` and
hence, ρ′1 ∼` ρ

′
2 σ
′
1 = σ1 ∼` σ2 = σ′2.

• Other rules: σ′1 = σ1 ∼` σ2 = σ′2.

�

Lemma 13. Suppose

38 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(1) 〈σ′0, ι0, ρ′0〉 → 〈σ′1, ι′1, ρ′1〉 →n−1 〈σ′n, ι′n, ρ′n〉,
(2) 〈σ′′0 , ι0, ρ′′0〉 → 〈σ′′1 , ι′′1, ρ′′1〉 →m−1 〈σ′′m, ι′′m, ρ′′m〉,
(3) (ρ′0 ∼` ρ

′′
0), (σ′0 ∼` σ

′′
0),

(4) (Γ(!ρ′0) = Γ(!ρ′′0) v `), (Γ(!ρ′n) = Γ(!ρ′′m) v `),
(5) ∀(0 < i < n).(Γ(!ρ′i) 6v `) ∧ ∀(0 < j < m).(Γ(!ρ′′j) 6v `),

then (ι′n = ι′′m), (ρ′n ∼` ρ
′′
m), and (σ′n ∼` σ

′′
m).

Proof. Starting with the same instruction and high context in both the runs can result in two
different instructions, ι′1 and ι′′1. This is only possible if ι was some branching instruction in the
first place and this divergence happened in a high context.

(1) To prove ι′n = ι′′m:
From the property of the IPDs, if ι0 pushes a node with label 6v ` on top of pc-stack which
was originally v `, IPD(ι0) pops that node. Since the runs start from the same instruction
ι0, ι′n = ι′′m = IPD(ι), where Γ(!ρ) v `.

(2) To prove ρ′n ∼` ρ
′′
m:

• n > 1 and m > 1: Γ(!ρ′1) 6v ` ∧ Γ(!ρ′′1) 6v `, because ι0 has the same IPD and ι′1, ι′′1 are
not the IPDs. As ρ′0 ∼ ρ′′0 and Γ(!ρ′1) 6v ` ∧ Γ(!ρ′′1) 6v `, from Lemma 12, ρ′1 ∼ ρ′′1 and
!ρ′1.ipd =!ρ′′1.ipd = IPD(ι0), if ι′1 6= IPD(ι0) and ι′′1 6= IPD(ι0). As ι′n = ι′′m = IPD(ι0), it
pops the !ρ′1 and !ρ′′1, which correspond to ρ′n and ρ′′m in the nth and mth step. Because
ρ′1 ∼ ρ′′1 and from Lemma 9, ρ′n ∼ ρ′′m.
• n = 1 and m > 1: If ι′1 = IPD(ι0), and Γ(!ρ′1) v `. It pops the node pushed by ι0, i.e.,

Γ(!ρ′n) v `. In the other run as Γ(!ρ′′1) 6v ` and Γ(!ρ′′m) v `, by the property of IPD
ι′′m = IPD(ι0), which would pop from the pc-stack !ρ′′m, the first frame labelled 6v ` on
the pc-stack. Thus, ρ′n ∼ ρ′′m.
• n > 1 and m = 1: Similar to the above case.

(3) To prove σ′n ∼` σ
′′
m:

(a) n > 1 and m > 1: From Lemma 12, σ′1 ∼` σ
′′
1 . From Lemma 11, σ′1 ∼` σ

′
n−1 and

σ′′1 ∼` σ
′′
m−1. And from Lemma 8 σ′n−1 ∼` σ

′
n and σ′′m−1 ∼` σ

′′
m. Similar case analysis as

above for different cases of equivalence.
(b) n = 1 and m > 1: In case of branch, σ′0 = σ′1 and σ′′0 = σ′′1 . Thus, σ′1 ∼` σ

′′
1 . From the

above case, if σ′1 ∼` σ
′′
1 , then σ′n ∼` σ

′′
m.

(c) n > 1 and m = 1: Symmetric case of the above.

�

Definition 1 (Trace). A trace is defined as a sequence of configurations or states resulting from a
program evaluation, i.e., for a program evaluation P = s1 → s2 → . . .→ sn where si = 〈σi, ιi, ρi〉,
the corresponding trace is given as T (P) := s1 :: s2 :: . . . :: sn.

Definition 2 (Epoch-trace). An epoch-trace for an adversary at level `, (E`) over a trace T =
s1 :: s2 :: . . . :: sn where si = 〈σi, ιi, ρi〉 is defined inductively as:

E`(nil) := nil

E`(si :: T) :=
{
si :: E(T) if Γ(!ρi) v `,

E(T) else if Γ(!ρi) 6v `.

Bichhawat et al. / Permissive Runtime IFC 39

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Theorem 3 (Termination-Insensitive Non-interference). Suppose P and P ′ are two program
evaluations.
Then for their respective epoch-traces with respect to an adversary at level ` given by:
E`(T (P)) = s1 :: s2 :: . . . :: sn,
E`(T (P ′)) = s′1 :: s′2 :: . . . :: s′m,
if s1 ∼` s

′
1 and n 6 m,

then
sn ∼` s

′
n

Proof. Proof by induction on n.
Basis: s1 ∼` s

′
1, by assumption.

IH: sk ∼` s
′
k

To prove: sk+1 ∼` s
′
k+1.

Let sk →i sk+1 and sk →i′ s′k+1, then:

• i = i′ = 1: From Lemma 12, sk+1 ∼` s
′
k+1.

• i > 1 or i′ > 1: From Lemma 13, sk+1 ∼` s
′
k+1.

�

Corollary 4. Suppose:

(1) 〈σ1, ι1, ρ1〉 ∼` 〈σ2, ι2, ρ2〉
(2) 〈σ1, ι1, ρ1〉 →∗ 〈σ′1, end, []〉
(3) 〈σ2, ι2, ρ2〉 →∗ 〈σ′2, end, []〉

Then, σ′1 ∼` σ
′
2.

Proof. σ1, σ2 and ρ1, ρ2 are empty at the end of ∗ steps. From the semantics, in context v `
both runs would push and pop the same number of nodes. Thus, both take same number of steps
in the epoch-trace. Assume it to be k . Then in Theorem 3, n = m = k. Thus, sk ∼` s

′
k, where

sk = 〈σ′1, end, []〉 and s′k = 〈σ′2, end, []〉. By Definition 15, σ′1 ∼` σ
′
2. �

References

[1] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, C. Kruegel, F. Piessens and G. Vigna,
You Are What You Include: Large-scale Evaluation of Remote Javascript Inclusions, in: Proc. 2012 ACM
Conference on Computer and Communications Security, CCS ’12, 2012, pp. 736–747.

[2] D. Jang, R. Jhala, S. Lerner and H. Shacham, An empirical study of privacy-violating information flows in
JavaScript web applications, in: Proc. 17th ACM Conference on Computer and Communications Security,
2010, pp. 270–283.

[3] A. Barth, The web origin concept. http://tools.ietf.org/html/rfc6454.
[4] Content Security Policy 1.0. http://www.w3.org/TR/CSP/.
[5] L.A. Meyerovich and B. Livshits, ConScript: Specifying and Enforcing Fine-Grained Security Policies for

JavaScript in the Browser, in: Proc. 2010 IEEE Symposium on Security and Privacy, 2010, pp. 481–496.
[6] M.T. Louw, K.T. Ganesh and V.N. Venkatakrishnan, AdJail: Practical Enforcement of Confidentiality and

Integrity Policies on Web Advertisements, in: Proc. 19th USENIX Conference on Security, 2010, pp. 24–24.
[7] Y. Zhou and D. Evans, Protecting Private Web Content from Embedded Scripts, in: Proc. 16th European

Conference on Research in Computer Security, 2011, pp. 60–79.

http://tools.ietf.org/html/rfc6454
http://www.w3.org/TR/CSP/

40 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[8] X. Dong, Z. Chen, H. Siadati, S. Tople, P. Saxena and Z. Liang, Protecting Sensitive Web Content from
Client-side Vulnerabilities with CRYPTONS, in: Proc. 2013 ACM SIGSAC Conference on Computer and
Communications Security, 2013, pp. 1311–1324.

[9] D. Crockford, ADSafe. http://adsafe.org/.
[10] Facebook. FBJS. https://developers.facebook.com/docs/javascript.
[11] Google Caja - A source-to-source translator for securing JavaScript-based web content, [Online; accessed

25-Apr-2017].
[12] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens and W. Joosen, WebJail: Least-privilege Integration of

Third-party Components in Web Mashups, in: Proc. 27th Annual Computer Security Applications Conference,
2011, pp. 307–316.

[13] D.E. Denning, A Lattice Model of Secure Information Flow, Commun. ACM 19(5) (1976), 236–243.
[14] D.E. Denning and P.J. Denning, Certification of programs for secure information flow, Commun. ACM 20(7)

(1977), 504–513. doi:10.1145/359636.359712.
[15] A.C. Myers, JFlow: practical mostly-static information flow control, in: Proc. 26th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, POPL ’99, 1999, pp. 228–241.
[16] D. Volpano, C. Irvine and G. Smith, A sound type system for secure flow analysis, J. Comput. Secur. 4(2–3)

(1996), 167–187.
[17] F. Pottier and V. Simonet, Information Flow Inference for ML, ACM Trans. Program. Lang. Syst. 25(1)

(2003), 117–158.
[18] S. Hunt and D. Sands, On Flow-sensitive Security Types, in: Proc. ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, 2006, pp. 79–90.
[19] A. Sabelfeld and A.C. Myers, Language-Based Information-Flow Security, IEEE Journal on Selected Areas

in Communications 21 (2003), 5–19.
[20] C. Hammer and G. Snelting, Flow-Sensitive, Context-Sensitive, and Object-sensitive Information Flow Con-

trol Based on Program Dependence Graphs, International Journal of Information Security 8(6) (2009),
399–422.

[21] J.S. Fenton, Memoryless subsystems, The Computer Journal 17(2) (1974), 143.
[22] T.H. Austin and C. Flanagan, Efficient purely-dynamic information flow analysis, in: Proc. ACM SIGPLAN

Fourth Workshop on Programming Languages and Analysis for Security, 2009, pp. 113–124. ISBN 978-1-
60558-645-8. doi:10.1145/1554339.1554353.

[23] T.H. Austin and C. Flanagan, Permissive dynamic information flow analysis, in: Proc. 5th ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security, 2010, pp. 3:1–3:12. ISBN 978-1-60558-827-8.
doi:10.1145/1814217.1814220.

[24] A. Askarov and A. Sabelfeld, Tight Enforcement of Information-Release Policies for Dynamic Languages, in:
Proc. IEEE Computer Security Foundations Symposium, 2009, pp. 43–59.

[25] A. Sabelfeld and A. Russo, From Dynamic to Static and Back: Riding the Roller Coaster of Information-Flow
Control Research, in: Proc. Perspectives of Systems Informatics, 2010, pp. 352–365.

[26] D. Devriese and F. Piessens, Noninterference through Secure Multi-execution, in: Proc. 2010 IEEE Sympo-
sium on Security and Privacy, 2010, pp. 109–124. ISBN 978-0-7695-4035-1. doi:10.1109/SP.2010.15.

[27] D. Hedin and A. Sabelfeld, Information-Flow Security for a Core of JavaScript, in: Proc. 25th IEEE Computer
Security Foundations Symposium, 2012, pp. 3–18. ISBN 978-0-7695-4718-3. doi:10.1109/CSF.2012.19.

[28] T.H. Austin and C. Flanagan, Multiple facets for dynamic information flow, in: Proc. 39th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2012, pp. 165–178. ISBN 978-1-
4503-1083-3. doi:10.1145/2103656.2103677.

[29] J. Yang, K. Yessenov and A. Solar-Lezama, A Language for Automatically Enforcing Privacy Policies, in:
Proc. 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’12, 2012, pp. 85–96.

[30] A. Bichhawat, V. Rajani, D. Garg and C. Hammer, Generalizing Permissive-Upgrade in Dynamic Information
Flow Analysis, in: Proc. Workshop on Programming Languages and Analysis for Security, 2014, pp. 15–24.

[31] D. Stefan, E.Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp and D. Mazières, Protecting Users
by Confining JavaScript with COWL, in: Proc. USENIX Symposium on Operating Systems Design and
Implementation, 2014, pp. 131–146.

[32] A.L. Scull Pupo, L. Christophe, J. Nicolay, C. de Roover and E. Gonzalez Boix, Practical Information
Flow Control for Web Applications, in: Runtime Verification, C. Colombo and M. Leucker, eds, Springer
International Publishing, Cham, 2018, pp. 372–388. ISBN 978-3-030-03769-7.

[33] G.L. Guernic, A. Banerjee, T. Jensen and D.A. Schmidt, Automata-based Confidentiality Monitoring, in:
Proc. Asian Computing Science Conference on Secure Software, 2006, pp. 75–89.

http://adsafe.org/
https://developers.facebook.com/docs/javascript

Bichhawat et al. / Permissive Runtime IFC 41

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[34] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel and G. Vigna, Cross-Site Scripting Prevention with Dynamic
Data Tainting and Static Analysis, in: Proc. Network and Distributed System Security Symposium, 2007.

[35] G. Le Guernic, Automaton-based Confidentiality Monitoring of Concurrent Programs, in: Proc. IEEE Com-
puter Security Foundations Symposium, 2007, pp. 218–232.

[36] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel and G. Vigna, Cross Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis, in: Proceeding of the Network and Distributed System Security
Symposium, 2007. https://www.isoc.org/isoc/conferences/ndss/07/papers/cross-site-scripting_prevention.
pdf.

[37] A. Russo and A. Sabelfeld, Dynamic vs. Static Flow-Sensitive Security Analysis, in: Proc. 2010 IEEE 23rd
Computer Security Foundations Symposium, 2010, pp. 186–199.

[38] T. Disney and C. Flanagan, Gradual Information Flow Typing, in: Proceedings of the 2nd International
Workshop on Scripts to Programs Evolution, STOP ’11, 2011.

[39] L. Fennell and P. Thiemann, Gradual Security Typing with References, in: Proceedings of the 2013 IEEE
26th Computer Security Foundations Symposium, CSF ’13, IEEE Computer Society, Washington, DC, USA,
2013, pp. 224–239. ISBN 978-0-7695-5031-2.

[40] A. Bichhawat, V. Rajani, D. Garg and C. Hammer, Information Flow Control in WebKit’s JavaScript Byte-
code, in: Proc. Principles of Security and Trust, 2014, pp. 159–178.

[41] D. Hedin, L. Bello and A. Sabelfeld, Value-Sensitive Hybrid Information Flow Control for a JavaScript-Like
Language, in: Proc. 2015 IEEE 28th Computer Security Foundations Symposium, CSF ’15, 2015, pp. 351–365.

[42] L. Fennell and P. Thiemann, LJGS: Gradual Security Types for Object-Oriented Languages, in: 30th European
Conference on Object-Oriented Programming, ECOOP 2016, 2016, pp. 9:1–9:26.

[43] A. Bedford, S. Chong, J. Desharnais, E. Kozyri and N. Tawbi, A Progress-Sensitive Flow-Sensitive Inlined
Information-Flow Control Monitor, Computers & Security 71 (2017), 114–131.

[44] M. Toro, R. Garcia and E. Tanter, Type-Driven Gradual Security with References, ACM Trans. Program.
Lang. Syst. 40(4) (2018), 16:1–16:55.

[45] A.A. de Amorim, M. Fredrikson and L. Jia, Reconciling Noninterference and Gradual Typing, in: Pro-
ceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20, As-
sociation for Computing Machinery, New York, NY, USA, 2020, pp. 116–129–. ISBN 9781450371049.
doi:10.1145/3373718.3394778.

[46] G. Richards, C. Hammer, B. Burg and J. Vitek, The Eval that Men Do – A Large-scale Study of the Use of
Eval in JavaScript Applications, in: ECOOP ’11, M. Mezzini, ed., LNCS, Vol. 6813, 2011, pp. 52–78. ISBN
978-3-642-22654-0.

[47] G. Richards, C. Hammer, F. Zappa Nardelli, S. Jagannathan and J. Vitek, Flexible Access Control
for Javascript, in: Proc. 2013 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA ’13, 2013, pp. 305–322. ISBN 978-1-4503-2374-1.
doi:10.1145/2509136.2509542.

[48] D.E. Robling Denning, Cryptography and Data Security, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1982. ISBN 0-201-10150-5.

[49] A. Askarov, S. Hunt, A. Sabelfeld and D. Sands, Termination-Insensitive Noninterference Leaks More Than
Just a Bit, in: Proc. European Symposium on Research in Computer Security, 2008, pp. 333–348.

[50] J.A. Goguen and J. Meseguer, Security policies and security models, in: Proc. 1982 IEEE Symposium on
Security and Privacy, 1982, pp. 11–20.

[51] S.A. Zdancewic, Programming Languages for Information Security, PhD thesis, Cornell University, 2002.
[52] S. Just, A. Cleary, B. Shirley and C. Hammer, Information flow analysis for JavaScript, in: Proc. 1st ACM

SIGPLAN International Workshop on Programming Language and Systems Technologies for Internet Clients,
2011, pp. 9–18. ISBN 978-1-4503-1171-7. doi:10.1145/2093328.2093331.

[53] B. Xin and X. Zhang, Efficient Online Detection of Dynamic Control Dependence, in: Proc. 2007 In-
ternational Symposium on Software Testing and Analysis, 2007, pp. 185–195. ISBN 978-1-59593-734-6.
doi:10.1145/1273463.1273489.

[54] W. Masri and A. Podgurski, Algorithms and tool support for dynamic information flow analysis, Information
& Software Technology 51(2) (2009), 385–404.

[55] T. Lengauer and R.E. Tarjan, A fast algorithm for finding dominators in a flowgraph, ACM Trans. Program.
Lang. Syst. 1(1) (1979), 121–141. doi:10.1145/357062.357071.

[56] M. Algehed and C. Flanagan, Transparent IFC Enforcement: Possibility and (In)Efficiency Results, in: 2020
IEEE 33rd Computer Security Foundations Symposium (CSF), 2020, pp. 65–78.

[57] W. Rafnsson and A. Sabelfeld, Secure Multi-execution: Fine-Grained, Declassification-Aware, and Transpar-
ent, in: Proc. 2013 IEEE 26th Computer Security Foundations Symposium, 2013, pp. 33–48.

https://www.isoc.org/isoc/conferences/ndss/07/papers/cross-site-scripting_prevention.pdf
https://www.isoc.org/isoc/conferences/ndss/07/papers/cross-site-scripting_prevention.pdf

42 Bichhawat et al. / Permissive Runtime IFC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[58] T. Schmitz, M. Algehed, C. Flanagan and A. Russo, Faceted Secure Multi Execution, in: ACM CCS, 2018,
pp. 1617–1634. ISBN 9781450356930. doi:10.1145/3243734.3243806.

[59] M. Algehed, A. Russo and C. Flanagan, Optimising Faceted Secure Multi-Execution, in: 2019 IEEE 32nd
Computer Security Foundations Symposium (CSF), 2019, pp. 1–16.

[60] A. Birgisson, D. Hedin and A. Sabelfeld, Boosting the Permissiveness of Dynamic Information-Flow Tracking
by Testing, in: Computer Security – ESORICS 2012, LNCS, Vol. 7459, Springer Berlin Heidelberg, 2012,
pp. 55–72. ISBN 978-3-642-33166-4.

[61] P. Buiras, D. Stefan and A. Russo, On Dynamic Flow-Sensitive Floating-Label Systems, in: Proc. 2014 IEEE
27th Computer Security Foundations Symposium, CSF ’14, IEEE Computer Society, 2014, pp. 65–79.

[62] A. Askarov and A. Sabelfeld, Catch me if you can: permissive yet secure error handling, in: Proc. ACM
SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security, 2009, pp. 45–57. ISBN
978-1-60558-645-8. doi:10.1145/1554339.1554346.

[63] R. Chugh, J.A. Meister, R. Jhala and S. Lerner, Staged information flow for JavaScript, in: Proc. 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2009, pp. 50–62.

[64] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet and R. Berg, Saving the world wide web from
vulnerable JavaScript, in: Proc. 2011 International Symposium on Software Testing and Analysis, ISSTA ’11,
2011, pp. 177–187. ISBN 978-1-4503-0562-4. doi:10.1145/2001420.2001442.

[65] M. Dhawan and V. Ganapathy, Analyzing Information Flow in JavaScript-Based Browser Extensions, in:
Proc. 2009 Annual Computer Security Applications Conference, ACSAC ’09, 2009, pp. 382–391. ISBN 978-
0-7695-3919-5.

[66] D. Hedin, A. Birgisson, L. Bello and A. Sabelfeld, JSFlow: Tracking Information Flow in JavaScript and Its
APIs, in: Proc. ACM Symposium on Applied Computing, 2014, pp. 1663–1671.

[67] D. Stefan, D. Mazières, J.C. Mitchell and A. Russo, Flexible dynamic information flow control in the presence
of exceptions, J. Funct. Program. 27 (2017), e5. doi:10.1017/S0956796816000241.

[68] C. Hritcu, M. Greenberg, B. Karel, B.C. Pierce and G. Morrisett, All Your IFCException Are Belong to
Us, in: Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP ’13, IEEE Computer Society,
USA, 2013, pp. 3–17–. ISBN 9780769549774. doi:10.1109/SP.2013.10.

[69] T.H. Austin, T. Schmitz and C. Flanagan, Multiple Facets for Dynamic Information Flow with Exceptions,
ACM Trans. Program. Lang. Syst. 39(3) (2017). doi:10.1145/3024086.

	Introduction
	Background and Overview
	Information flow control
	Dynamic information flow control
	Basic IFC semantics
	Dynamically handling implicit leaks using no-sensitive-upgrade check
	Soundness the no-sensitive-upgrade check

	Permissive-upgrade strategy for handling implicit leaks

	Improved Permissive-Upgrade Strategy
	Generalized Permissive-Upgrade Strategy
	Generalized improved permissive-upgrade strategy on powerset lattices
	Generalized improved permissive-upgrade on arbitrary lattices
	Termination-insensitive non-interference (TINI)
	Comparison of the generalization of Section 4.2 with the generalization of Section 4.1

	Handling Implicit Leaks with Complex Features
	Control flow graphs and post-dominator analysis
	Synthetic exit nodes
	Precision proofs

	Formal Model
	Related Work
	Permissive IFC
	IFC with error handling

	Conclusion
	Appendix A. Proofs for Improved and Generalized Permissive Upgrade
	Proofs for Improved Permissive Upgrade Strategy
	Examples for Equivalence Definition
	Proofs and Results for Generalized Permissive Upgrade for Arbitrary Lattices

	Appendix B. Proofs for IFC with Unstructured Control Flow and Exceptions
	References

