
A Modal Type Theory of Expected Cost in Higher-Order
Probabilistic Programs

VINEET RAJANI, University of Kent, United Kingdom
GILLES BARTHE,MPI-SP, Germany and IMDEA Software Institute, Spain
DEEPAK GARG,Max Planck Institute for Software Systems, Germany

The design of online learning algorithms typically aims to optimise the incurred loss or cost, e.g., the number
of classification mistakes made by the algorithm. The goal of this paper is to build a type-theoretic framework
to prove that a certain algorithm achieves its stated bound on the cost.

Online learning algorithms often rely on randomness, their loss functions are often defined as expectations,
precise bounds are often non-polynomial (e.g., logarithmic) and proofs of optimality often rely on potential-
based arguments. Accordingly, we present p𝜆-amor, a type-theoretic graded modal framework for analysing
(expected) costs of higher-order probabilistic programs with recursion. p𝜆-amor is an effect-based framework
which uses graded modal types to represent potentials, cost and probability at the type level. It extends prior
work (𝜆-amor) on cost analysis for deterministic programs. We prove p𝜆-amor sound relative to a Kripke
step-indexed model which relates potentials with probabilistic coupling. We use p𝜆-amor to prove cost bounds
of several examples from the online machine learning literature. Finally, we describe an extension of p𝜆-amor
with a graded comonad and describe the relationship between the different modalities.

CCS Concepts: • Theory of computation→ Type theory; Probabilistic computation; • Computing
methodologies→ Online learning settings.

Additional Key Words and Phrases: graded modal types, expected cost, higher-order programs, potentials,
probabilistic coupling

ACM Reference Format:
Vineet Rajani, Gilles Barthe, and Deepak Garg. 2024. A Modal Type Theory of Expected Cost in Higher-
Order Probabilistic Programs. Proc. ACM Program. Lang. 8, OOPSLA2, Article 285 (October 2024), 26 pages.
https://doi.org/10.1145/3689725

1 Introduction
An important task in online machine learning is to both learn and make optimal decisions incremen-
tally (as data becomes available) over a series of rounds. Algorithms for online learning often rely
on randomness to prevent overfitting to specific data that has been seen in the past. The efficacy of
such an algorithm is typically measured by a cost function, and the goal of algorithm design in
this space is to find online algorithms that minimise the worst-case cost where the worst-case is
over all possible sequences of input data. The cost function is typically an expectation over the
algorithm’s internal randomness, e.g., the expected number of mistakes made by the algorithm
over 𝑁 rounds (also known as incurred loss), or the incurred loss relative to the minimum possible
loss in hindsight (also known as the accumulated regret).

Authors’ Contact Information: Vineet Rajani, University of Kent, Canterbury, United Kingdom, V.Rajani@kent.ac.uk; Gilles
Barthe, MPI-SP, Bochum, Germany and IMDEA Software Institute, Madrid, Spain, gilles.barthe@mpi-sp.org; Deepak Garg,
Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany, dg@mpi-sws.org.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART285
https://doi.org/10.1145/3689725

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0001-7701-8311
HTTPS://ORCID.ORG/0000-0002-3853-1777
HTTPS://ORCID.ORG/0000-0002-0888-3093
https://doi.org/10.1145/3689725
https://orcid.org/0000-0001-7701-8311
https://orcid.org/0000-0002-3853-1777
https://orcid.org/0000-0002-3853-1777
https://orcid.org/0000-0002-0888-3093
https://doi.org/10.1145/3689725
https://creativecommons.org/licenses/by/4.0/

285:2 Vineet Rajani, Gilles Barthe, and Deepak Garg

For a given online learning algorithm, one often wishes to prove a worst-case upper-bound on
the cost function. These bounds can be involved functions (e.g., logarithmic) of the input length,
and are often proved using potential-based arguments [Arora et al. 2012; Bansal and Gupta 2019;
Cesa-Bianchi and Lugosi 2006]. To understand this, consider a probabilistic program that starts in
some initial state 𝑠 , samples from a distribution 𝜇, depending on the outcome 𝑎 of the sampling
(where 𝑎 is in the support of 𝜇) moves to a state 𝑠′𝑎 , incurs a cost 𝑐𝑜𝑠𝑡 (𝑠, 𝑠′𝑎) in doing so, and then
recurses. To obtain an upper-bound on the cost of such a program, it suffices to show the existence
of a potential function 𝜙 (𝑠) s.t. 𝜙 (𝑠) ≥ E𝑎←𝜇 [𝑐𝑜𝑠𝑡 (𝑠, 𝑠′𝑎) +𝜙 (𝑠′𝑎)], meaning that the expectation over
the cost of a single iteration (𝑐𝑜𝑠𝑡 (𝑠, 𝑠′𝑎)) and the remaining potential (𝜙 (𝑠′𝑎)) is upper-bounded by
the initial potential. By repeating this argument for every iteration of the probabilistic program
with the remaining potential from the previous round, and using a telescopic sum along with the
linearity of expectations, one can show that the starting potential is an upper-bound on the total
expected cost.

The goal of this work is to internalise the above potential-based reasoning into a type theory to
compositionally prove upper-bounds on the worst-case expected costs of probabilistic recursive
programs, such as many online learning algorithms. We note that the potential-based reasoning
above is similar to standard potential-based arguments for amortised cost analysis of operations on
data structures [Okasaki 1996; Tarjan 1985]. Recent work, 𝜆-amor [Rajani et al. 2021], has shown
how a combination of graded modal types, refinement types, and affineness (in the sense of affine
logic) can be used to build an expressive type theory for amortised cost analysis for deterministic
higher-order programs. In this paper, we use 𝜆-amor as a starting point and extend its modal
framework to reason about probabilistic computation and expected cost. We call our framework
p𝜆-amor (short for probabilistic 𝜆-amor).
In the following, we provide an overview of our work, some of the challenges in the design of

p𝜆-amor, and our contributions.

Type-Level Cost and Probabilistic Effects. In a probabilistic higher-order setting, precise reasoning
about expected cost requires quantitative reasoning with symbolic probability distributions at
the type level [Avanzini et al. 2019]. Our key insight is to use a joint probability and expected cost
monad, PC(𝑎←𝜇) 𝜅 (𝜏 (𝑎)), which represents computations that internally sample a value 𝑎 from
the symbolic distribution 𝜇, eventually outputting something of type 𝜏 (𝑎), and whose expected cost
(averaged over 𝜇) is upper-bounded by 𝜅. Our syntactic development focuses on the typing rules
for this new monad. We also have a graded modality for potentials, [𝑝] 𝜏 , which represents values
of type 𝜏 along with an expected potential of 𝑝 units.

Relating Type-Level and Runtime Probabilistic Effects. Prior type-theoretic work on expected cost
analysis either works with finite-support discrete distributions over first-order data [Wang et al.
2020] or assumes a bijection between the sample spaces of the static distribution (in the types) and
the runtime distribution (in the semantics) [Avanzini et al. 2019].

In p𝜆-amor, we overcome both of these limitations. We allow finite-support discrete distributions
over higher-order data, and also do not assume a bijection between the static and the dynamic
distributions. The key idea behind overcoming these limitations is the development of a logical
relation model that uses probabilistic coupling [Villani 2008] to relate the static and dynamic
distributions. We believe this insight could be useful even outside of the cost setting. For instance, it
could be interesting to investigate if continuous runtime distributions can be analysed using discrete
approximations at the level of types, when there is a coupling that relates the two appropriately.

Semantic Model. A natural question that arises when building a modal type theory is about
the semantics of the modalities. In this work, we build a Kripke step-indexed logical relation

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:3

model [Ahmed 2004; Mitchell 1996] for the types of p𝜆-amor. It not only uses probabilistic coupling
to relate the static and dynamic distributions (as mentioned above), but also uses coupling to relate
potentials to the expected cost. We believe this is the first paper which explores logical relation
models with potential functions, expected cost and probabilistic couplings.

Multiple Modalities and the Interaction between Them. As mentioned above, p𝜆-amor has two
graded modalities: a joint probability and expected cost monad (simply called the cost monad in
the rest of the paper) and a potential modality. Building on Bounded Linear Logic (BLL) [Girard
et al. 1992], many graded modal type theories [Avanzini et al. 2019; Dal Lago and Gaboardi 2011;
Dal Lago and Petit 2012; Orchard et al. 2019; Rajani et al. 2021] include a graded comonad for
fine-grained resource tracking, such as the number of times each program variable is used. We
present an extension of p𝜆-amor (called p𝜆-amorC) with such a BLL-style graded comonad and
study the interaction among the three modalities. We relate the cost monad and the potential
modality via coercion functions forming an isomorphism, and relate the graded comonad and the
potential modality via two distributive laws that we internalise as subtyping rules in the extended
theory.

Summary of Contributions. To summarise, we make the following technical contributions:

• Amodal type theory, p𝜆-amor, for reasoning about the expected cost of recursive higher-order
probabilistic programs using potentials.
• A Kripke, step-indexed model of types that uses probabilistic couplings to model our cost
monad and potentials, and a proof that p𝜆-amor is sound relative to this model.
• Verification of expected cost bounds (expected loss and regret) for several examples from the
online machine learning literature, which we believe cannot be verified using existing formal
approaches.
• An extension of p𝜆-amor with a BLL-style graded comonad, and a study of the interaction
between the three modalities (the monad, the comonad, and potentials).

Organisation. We begin with relevant background material in section 2. We cover online machine
learning (section 2.1), basics of 𝜆-amor (section 2.2) that is the prior work we build upon, and
necessary concepts from probability theory (section 2.3). Section 3 describes the language (statics
and dynamics) and the type system of p𝜆-amor. It also describes the semantic model of types, which
we use to prove the soundness of p𝜆-amor. Section 4 describes applications of p𝜆-amor by verifying
expected costs of several problems from the online learning literature. In section 5, we describe
an extension of p𝜆-amor with a graded comonad. This extension is named. We describe the key
changes needed in the type theory and the model to support the graded comonad. We also describe
how the graded comonad relates to the potential modality through distributive laws. Section 6
describes related work and section 7 concludes the paper.

A technical appendix [Rajani et al. 2024] contains proofs of theorems and additional details that
are omitted from this paper due to space restrictions.

Limitations and Scope. Our focus is on developing the theoretical foundations of our type theory.
The implementation and mechanisation of this theory is out of the scope of this paper, but would
be an interesting direction of future work.

2 Background
We start with background material on online machine learning, a high-level overview of 𝜆-amor,
and relevant concepts from probability theory.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

285:4 Vineet Rajani, Gilles Barthe, and Deepak Garg

2.1 Online Machine Learning with an Illustrative Example
Online machine learning deals with the problem of sequential decision making under uncertainty.
Unlike the batch learning approach, where the model is trained a priori on the entire dataset before
the model is used for decision making, in an online setting both the learning and decisions are
made as data becomes available over a sequence of trails or rounds.

We illustrate the key characteristics of online learning algorithms using a well-known algorithm,
Randomised Weighted Majority (RWM) [Arora 2013; Arora et al. 2012], which solves the problem
of prediction with experts’ advice [Arora et al. 2012]. Specifically, the goal is to make a sequence of
binary predictions (one per round), e.g., whether a stock’s price will go up or down each day. The
prediction can use the advice of experts (formally, a finite list of functions passed as inputs), but the
algorithm does not know a priori which expert(s) give the correct advice in any given round. In fact,
the experts could be adversarial and might make wrong predictions deliberately. This is countered
using randomisation. At the end of each round, the ground truth is revealed, which the online
algorithm can use to improve its decisions in the future, e.g., by assigning appropriate weights to
each of those experts. Naturally, a good algorithm is one that incurs the minimum loss (number of
mistakes) in expectation, typically expressed as a bound on the expected loss of the algorithm.
We describe an encoding of the RWM algorithm in a Haskell-like functional language as a

higher-order program (Fig. 1). The function 𝑟𝑤𝑚 takes four inputs: the number of rounds (of type
nat), a list of experts (each expert is a function from nat to bool), a learning rate 𝑒𝑡𝑎 (a real number)
and an initial list of weights, one for each expert (also real numbers). It produces a distribution
over the list of predictions made in each round (of the type P (𝐿 B), where P is the Giry monad of
probability distributions, 𝐿 is the list type constructor and B is the boolean type).1 If the number of
remaining rounds is zero then the algorithm just returns a point distribution over an empty list.
Otherwise, it follows the steps of the RWM algorithm outlined above (lines 6–12). The 𝑔𝑒𝑡𝐴𝑑𝑣𝑖𝑐𝑒
function simply gets the advice of all the experts for that round. The𝑚𝑎𝑘𝑒𝑃𝑟𝑒𝑑 function randomly
samples an expert, weighing each expert in proportion to its current weight, and returns the advice
of that expert. This sampled advice, 𝑝𝑟 , is the algorithm’s outcome for the round. The 𝑔𝑒𝑡𝐴𝑛𝑠𝑤𝑒𝑟

function (not shown in the figure) is an oracle that provides the ground truth for that round. This
ground truth is later used to adjust the weights of the experts using the 𝑐ℎ𝑔𝑊𝑡𝑠 function, which
reduces the weight of all the experts who answered incorrectly by a factor 1 − 𝑒𝑡𝑎. This procedure
is repeated for the remaining rounds, and finally, a distribution over the list of predictions, one per
round, is returned as the output.
A natural question about this algorithm is the following: can we get an upper-bound on the

expected number of mistakes (often referred to as the expected loss) made by the algorithm over a
certain number of rounds? The answer to this question is yes. In particular, the following theorem
shows such a bound on the expected loss of 𝑟𝑤𝑚.

Theorem 1 (Expected loss of 𝑟𝑤𝑚). Let (1) 𝑇 be the number of rounds for which we want to
make predictions with 𝑟𝑤𝑚 (i.e., 𝑇 is the initial value of 𝑟𝑜𝑢𝑛𝑑), (2) 𝑡 be a counter over rounds
starting from 𝑡 = 0 (so, 𝑡 ≜ 𝑇 − 𝑟𝑜𝑢𝑛𝑑 and round 𝑡 = 𝑇 is an additional trivial round at the end that
terminates immediately in the Z case of the algorithm), (3) 𝑛 be the number of experts, (4) 𝜂 denote
the learning rate, (5) 𝑤𝑖 (𝑡) be the weight of the 𝑖𝑡ℎ expert at the beginning of round 𝑡 , such that
𝑤𝑖 (𝑡) ≥ 1/(1−𝜂)𝑇 , (6) 𝑙𝑜𝑠𝑠 (𝑡) denote the loss of the algorithm in round 𝑡 , and (7) 𝜙 (𝑡) ≜ ∑𝑛−1

𝑖=0 𝑤𝑖 (𝑡).
Then,

E

[
𝑇−1∑︁
𝑡=0

𝑙𝑜𝑠𝑠 (𝑡)
]
≤ log(𝜙 (0))

𝜂
− log(𝜙 (𝑇))

𝜂

1We later refine P𝜏 with probabilities and expected cost to get the monad PC(𝑎←𝜇) 𝜅 𝜏 (𝑎) from section 1.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:5

1 𝑟𝑤𝑚 : N → 𝐿(N→ B) → R → 𝐿 R
2 → P (𝐿 B)
3 fix 𝑟𝑤𝑚.𝜆 𝑟𝑜𝑢𝑛𝑑 𝑒𝑥𝑝𝑒𝑟𝑡𝑠 𝑒𝑡𝑎 𝑤𝑡𝑠.

4 matchN 𝑟𝑜𝑢𝑛𝑑

5 ,Z ↦→ (return nil)
6 , S 𝑟𝑛𝑑 ↦→
7 let 𝑎𝑑𝑣𝑠 = 𝑔𝑒𝑡𝐴𝑑𝑣𝑖𝑐𝑒 𝑟𝑜𝑢𝑛𝑑 𝑒𝑥𝑝𝑒𝑟𝑡𝑠 in
8 bind 𝑝𝑟 =𝑚𝑎𝑘𝑒𝑃𝑟𝑒𝑑 𝑎𝑑𝑣𝑠 𝑤𝑡𝑠 in
9 let 𝑎𝑛𝑠 = 𝑔𝑒𝑡𝐴𝑛𝑠𝑤𝑒𝑟 𝑟𝑜𝑢𝑛𝑑 in
10 let 𝑛𝑤 = 𝑐ℎ𝑔𝑊𝑡𝑠 𝑤𝑡𝑠 𝑎𝑑𝑣𝑠 𝑎𝑛𝑠 𝑒𝑡𝑎 in
11 bind 𝑟𝑒𝑐 = 𝑟𝑤𝑚 𝑟𝑛𝑑 𝑒𝑥𝑝𝑒𝑟𝑡𝑠 𝑒𝑡𝑎 𝑛𝑤 in
12 return (𝑝𝑟 :: 𝑟𝑒𝑐)

1 𝑔𝑒𝑡𝐴𝑑𝑣𝑖𝑐𝑒 : N→ 𝐿(N→ B) → 𝐿 B
2 𝑔𝑒𝑡𝐴𝑑𝑣𝑖𝑐𝑒 ≜

3 𝜆 𝑟 𝑒𝑥𝑝. 𝑚𝑎𝑝 (𝜆 𝑒. 𝑒 𝑟) 𝑒𝑥𝑝

1 𝑚𝑎𝑘𝑒𝑃𝑟𝑒𝑑 : 𝐿 B→ 𝐿 R→ P (𝐿 B)
2 𝑚𝑎𝑘𝑒𝑃𝑟𝑒𝑑 ≜ 𝜆 𝑎𝑑𝑣𝑠 𝑤𝑡𝑠.

3 let 𝑝ℎ𝑖 = 𝑠𝑢𝑚 𝑤𝑡𝑠 in
4 let 𝑝𝑟𝑜𝑏 =𝑚𝑎𝑝 (𝜆𝑥 . (𝑥/𝑝ℎ𝑖)) 𝑤𝑡𝑠 in
5 bind 𝑥 = toDist 𝑝𝑟𝑜𝑏 in
6 let 𝑝𝑟𝑒𝑑 = 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥 𝑎𝑑𝑣𝑠 in
7 return 𝑝𝑟𝑒𝑑

1 𝑐ℎ𝑔𝑊𝑡𝑠 : 𝐿 R→ 𝐿 B→ B→ R
2 → 𝐿 R
3 𝑐ℎ𝑔𝑊𝑡𝑠 ≜ 𝜆 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑎𝑑𝑣𝑠 𝑎𝑛𝑠 𝑒𝑡𝑎.

4 𝑚𝑎𝑝 (𝜆𝑝. let ⟨⟨𝑎𝑛,𝑤𝑡⟩⟩ = 𝑝 in
5 if 𝑎𝑛 == 𝑎𝑛𝑠

6 then 𝑤𝑡

7 else 𝑤𝑡 ∗ (1 − 𝑒𝑡𝑎)
8) (𝑧𝑖𝑝 𝑎𝑑𝑣𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑠)

Fig. 1. The Randomised Weighted Majority (RWM) algorithm for prediction with experts’ advice

The proof of theorem 1 relies on a potential-based argument. In particular, a potential of log(𝜙 (𝑡))
𝜂

units is sufficient to account for the expected cost of the 𝑡𝑡ℎ and subsequent rounds. The constraint
on the weights (in condition 5 of the theorem) is required to ensure that the potential always
remains non-negative. The method of potentials [Tarjan 1985] is sound only under this positivity
assumption. In the following, we give the intuition behind the proof. Later, we formalise the proof
in our type theory (Section 4.2).
From the algorithm, the probability of selecting the 𝑖𝑡ℎ expert in round 𝑡 is 𝑤𝑖 (𝑡)

𝜙 (𝑡) . Define the
loss of the 𝑖𝑡ℎ expert in the 𝑡𝑡ℎ round, 𝑙𝑜𝑠𝑠𝑖 (𝑡), as 0 if the 𝑖𝑡ℎ expert predicts correctly in the 𝑡𝑡ℎ
round, and 1 otherwise. Then, the expected loss of the algorithm in the 𝑡𝑡ℎ round is E[𝑙𝑜𝑠𝑠 (𝑡)] =
1

𝜙 (𝑡)
∑

𝑖<𝑛𝑤𝑖 (𝑡) · 𝑙𝑜𝑠𝑠𝑖 (𝑡), where 𝑛 is the number of experts. From the algorithm, we also know that
the weight of the 𝑖𝑡ℎ expert in the (𝑡 + 1)𝑡ℎ round is𝑤𝑖 (𝑡) · (1−𝜂 · 𝑙𝑜𝑠𝑠𝑖 (𝑡)). Using this, we calculate:

𝜙 (𝑡 + 1) =
∑

𝑖<𝑛𝑤𝑖 (𝑡) · (1 − 𝜂 · 𝑙𝑜𝑠𝑠𝑖 (𝑡))
=

∑
𝑖<𝑛𝑤𝑖 (𝑡) − 𝜂

∑
𝑖<𝑛𝑤𝑖 (𝑡) · 𝑙𝑜𝑠𝑠𝑖 (𝑡)

= 𝜙 (𝑡) (1 − 𝜂 · E[𝑙𝑜𝑠𝑠 (𝑡)])
≤ 𝜙 (𝑡) · 𝑒−𝜂 ·E[𝑙𝑜𝑠𝑠 (𝑡)]

E[𝑙𝑜𝑠𝑠 (𝑡)] ≤ log(𝜙 (𝑡))
𝜂

− log(𝜙 (𝑡+1))
𝜂

(1)

Equation (1) gives a bound on the expected loss of 𝑟𝑤𝑚 in the 𝑡𝑡ℎ round. If we define the input
potential for the 𝑡𝑡ℎ round to be log(𝜙 (𝑡))

𝜂
, then the expected loss in the 𝑡𝑡ℎ round is bounded by the

change in potential when going from round 𝑡 to round 𝑡 + 1, i.e., log(𝜙 (𝑡))
𝜂

− log(𝜙 (𝑡+1))
𝜂

. Repeating
this argument over all the rounds from 𝑡 = 0 to 𝑡 = 𝑇 one obtains a telescopic sum, resulting in the
bound the sum of expected loss over all the rounds by log(𝜙 (0))

𝜂
− log(𝜙 (𝑇))

𝜂
. Finally, using linearity

of expectation we can conclude the proof of Theorem 1.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

285:6 Vineet Rajani, Gilles Barthe, and Deepak Garg

Θ ⊢ 𝜅 : R+

Ψ;Θ;Δ;Ω; Γ ⊢ ↑𝜅 : M𝜅 1
T-tick

Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏
Ψ;Θ;Δ;Ω; Γ ⊢ return 𝑒 : M 0𝜏

T-ret

Ψ;Θ;Δ;Ω; Γ1 ⊢ 𝑒1 : M𝜅1 𝜏1
Ψ;Θ;Δ;Ω; Γ2, 𝑥 : 𝜏1 ⊢ 𝑒2 : M𝜅2 𝜏2

Θ ⊢ 𝜅1 : R+ Θ ⊢ 𝜅2 : R+

Ψ;Θ;Δ;Ω; Γ1 + Γ2 ⊢ bind 𝑒1 = 𝑥 in 𝑒2 : M(𝜅1 + 𝜅2) 𝜏2
T-bind

Ψ;Θ;Δ;Ω; Γ1 ⊢ 𝑒1 : [𝜅1] 𝜏1 Ψ;Θ;Δ;Ω; Γ2, 𝑥 : 𝜏1 ⊢ 𝑒2 : M(𝜅1 + 𝜅2) 𝜏2
Θ ⊢ 𝜅1 : R+ Θ ⊢ 𝜅2 : R+

Ψ;Θ;Δ;Ω; Γ1 + Γ2 ⊢ 𝑥 = release 𝑒1; 𝑒2 : M𝜅2 𝜏2
T-release

Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏 Θ ⊢ 𝜅 : R+

Ψ;Θ;Δ;Ω; Γ ⊢ store 𝑒 : M𝜅 ([𝜅] 𝜏)
T-store

Ψ;Θ, 𝑎;Δ, 𝑎 < 𝐼 ;Ω; . ⊢ 𝑒 : 𝜏

Ψ;Θ;Δ;
∑︁
𝑎<𝐼

Ω; . ⊢!𝑒 :!𝑎<𝐼𝜏
T-subExpI

Ψ;Θ;Δ;Ω1; Γ1 ⊢ 𝑒 : (!𝑎<𝐼𝜏) Ψ;Θ;Δ;Ω2, 𝑥 :𝑎<𝐼 𝜏 ; Γ2 ⊢ 𝑒′ : 𝜏 ′

Ψ;Θ;Δ;Ω1 + Ω2; Γ1 + Γ2 ⊢ let !𝑥 = 𝑒 in 𝑒′ : 𝜏 ′
T-subExpE

Fig. 2. A subset of the typing rules of 𝜆-amor [Rajani et al. 2021]

To summarise, our illustrative example, RWM, highlights several key characteristics of online
learning algorithms [Arora et al. 2012; Bansal and Gupta 2019; Cesa-Bianchi and Lugosi 2006]: it is
higher-order and recursive, it uses randomisation, and it has a potential-based proof.

2.2 𝜆-amor
Potential-based reasoning is not limited to the analysis of probabilistic programs like RWM. For
instance, the domain of amortised complexity analysis [Tarjan 1985] makes crucial use of potential
functions even in a deterministic setting. 𝜆-amor [Rajani et al. 2021] is a graded modal type theory
for the amortised cost analysis of deterministic higher-order functional programs. Our work builds
on 𝜆-amor and generalises it to a probabilistic setting, which is why we call our framework p𝜆-amor.
In this subsection, we recapitulate the salient points of 𝜆-amor.

The typing judgment of 𝜆-amor, Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏 , says that an expression 𝑒 has type 𝜏 under
the assumptions specified by five contexts: Ψ is a map from type variables to kinds, Θ is a map from
index variables to sorts, Δ is a set of constraints on indices, Ω is a map from non-affine variables to
their types and multiplicities, and Γ is a map from affine variables to their types. Here, we give an
overview of the typing rules for the three modalities used by 𝜆-amor (listed in Fig. 2).

Cost Monad. 𝜆-amor uses a cost monad to track cost:M𝜅 𝜏 is the type – technically, a graded
monad – of expressions with underlying type 𝜏 and a cost of at most 𝜅 units when forced. T-ret is
the typing rule for the return of the monad, which simply injects a pure term of type 𝜏 into the
monad with 0 cost. T-bind is the rule for sequencing monadic terms; it sums up the costs of the
terms being sequenced. Finally, 𝜆-amor has a construct ‘tick’, denoted ↑𝜅 , which incurs cost 𝜅 and
returns a unit value (rule T-tick). This construct is the only way to obtain a non-zero cost in a
𝜆-amor program.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:7

Potential Modality. Potentials are the key to amortised cost analysis [Tarjan 1985] and 𝜆-amor
uses a separate modality to handle potentials at the type level. The type [𝑝] 𝜏 specifies the type of a
term that has potential 𝑝 stored with it. There are two ways to manipulate potential. First, potential
can be attached to a type using the ‘store’ construct. Second, potential can be detached from a
type using the ‘release’ construct. Storing potential (T-store) with a type is a costful operation and
incurs the same cost as the potential stored. Dually, releasing potential (T-release) reduces the cost
of a subsequent computation by an amount equal to the potential released.

Multiplicity-Graded Comonad. Finally, 𝜆-amor inherits the standard graded sub-exponential, a
graded comonad, (!𝑖<𝑛𝜏) from Bounded Linear Logic [Girard et al. 1992]). This comonad tracks
the number of times a term may be used. Informally, !𝑖<𝑛𝜏 is the type of a term that has 𝑛 variant
copies of types 𝜏 [0/𝑖], . . . , 𝜏 [(𝑛 − 1)/𝑖]. Morally, !𝑖<𝑛𝜏 is the affine iterated tensor product 𝜏 [0/𝑖] ⊗
𝜏 [1/𝑖] . . . ⊗ 𝜏 [(𝑛−1)/𝑖]. T-subExpI is the rule for introducing a !𝑖<𝑛𝜏 . It says that, under a non-affine
context Ω and an empty affine context (denoted by ·), if a term 𝑒 can be assigned a type 𝜏 (with
𝑎 free, s.t. 𝑎 < 𝐼), then under 𝐼 copies of the non-affine context (denoted by

∑
𝑎<𝐼 Ω), !𝑒 can be

assigned a type !𝑎<𝐼𝜏 . T-subExpE is the dual rule, which says that eliminating a term of type !𝑎<𝐼𝜏
yields 𝐼 copies of that term (bound to x) in its continuation (denoted by 𝑥 :𝑎<𝐼 𝜏).

2.3 Probability Theory Preliminaries
Next, we summarise relevant concepts of probability theory.

Definition 2 (Discrete probability distribution). A (total) discrete probability distribution, 𝜇,
consists of a carrier set 𝑆 and a measure𝑀 on that set, i.e.,𝑀 : 𝑆 → [0, 1] s.t.∑𝑎∈𝑆 (𝑀 𝑎) = 1. 𝜇 is a
sub-distribution when

∑
𝑎∈𝑆 𝑀 𝑎 ≤ 1.

Definition 3 (Marginals). For 𝑆 = 𝑆1 × 𝑆2, the first marginal of a product distribution (𝑆,𝑀) is
defined asM1 (𝑆,𝑀) ≜ (𝑆1, 𝑀1) where 𝑀1 (𝑥) ≜

∑
𝑦∈𝑆2 𝑀 (𝑥,𝑦). The second marginalM2 (𝑆,𝑀) is

defined symmetrically.

A probabilistic coupling (or simply coupling) is a fundamental concept used in the analysis of
many probabilistic processes [Villani 2008].

Definition 4 (Coupling). Let 𝜇1 = (𝑆1, 𝑀1) and 𝜇2 = (𝑆2, 𝑀2) be two distributions. A distribution 𝜇

over the product space 𝑆1 × 𝑆2 is a coupling of 𝜇1 and 𝜇2, denoted 𝜇 : 𝜇1 ↔ 𝜇2, iffM1 (𝜇) = 𝜇1 and
M2 (𝜇) = 𝜇2.

Finally, the convolution is a specific way of creating a product distribution (see below).

Definition 5 (Convolution). Let 𝜇1 = (𝑆1, 𝑀1) be a distribution and let 𝜇2 (𝑎) = (𝑆2 (𝑎), 𝑀2 (𝑎)) for
𝑖 ∈ 𝑆1 be an 𝑆1-indexed family of distributions. We define the convolution (𝜇1 ⊗ 𝑎.𝜇2) ≜ (𝑆,𝑀),
where 𝑆 ≜ {(𝑖, 𝑗) | 𝑖 ∈ 𝑆1 and 𝑗 ∈ 𝑆2 (𝑖)} and𝑀 (𝑖, 𝑗) ≜ 𝑀1 (𝑖) ·𝑀2 (𝑖) (𝑗).

Note that if 𝜇1 and 𝜇2 are total distributions and 𝜇2 does not depend on 𝜇1 (i.e., 𝜇2 (𝑖) is independent
of 𝑖), then their convolution is a (trivial) coupling between them.

3 P𝜆-amor
This section describes our language and type theory, which we refer to as p𝜆-amor. p𝜆-amor is an
affine type theory with refinement types and two graded modalities for the purpose of cost analysis:
a monad graded with probability and expected cost and a graded modal type for potentials.

3.1 Statics
Indices and Constraints. An index term (pl. index terms or static indices or indices) represents

grades like costs and potentials, and standard type refinements like list lengths. Indices are sorted.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

285:8 Vineet Rajani, Gilles Barthe, and Deepak Garg

Types 𝜏 ::= 1 | B(𝐼) | N(𝐼) | R(𝐼) | 𝐿𝑖<𝐼 𝜏 | 𝜏1 ⊸ 𝜏2 | 𝜏1 ⊗ 𝜏2 | 𝜏1 & 𝜏2 | 𝜏1 + 𝜏2 |
! 𝜏 | ∃𝑥 :𝑆.𝜏 | ∀𝑥 :𝑆.𝜏 | ∀𝛼.𝜏 | 𝛼 | 𝐶&𝜏 | 𝐶 ⇒ 𝜏 | [𝐼] 𝜏 | PC(𝑎←𝜇) 𝐼 𝜏

Index term 𝐼 , 𝜅, 𝑝, 𝑛 ::= 𝑖 | 𝐵 | 𝑁 | 𝑅 | 𝐼 + 𝐼 | 𝜆𝑠𝑖 : 𝑆.𝐼 | 𝐼 𝐼 | if 𝐼 𝐼 𝐼 | 𝐼 == 𝐼 | 𝑙𝑜𝑔 𝐼 | 𝑒𝑥𝑝 𝐼 | 𝜇
Static Distribution 𝜇 ::= (𝐶𝑠 , 𝑀𝑠)

𝐶𝑠 = Finite set of indices and𝑀𝑠 : 𝐶𝑠 → R+ [0, 1]
Sort 𝑆 ::= B | N | R | (𝑆, 𝑆) | 𝑆→𝑆 | D𝑆 | S𝑆
Constraints 𝑐 ::= 𝐼 = 𝐼 | 𝐼 < 𝐼 | 𝑐 ⇒ 𝑐 | 𝑐 ∧ 𝑐 | (1 − 𝐼) ≤ 𝑒𝑥𝑝 (−𝐼) |

𝐼 > 0⇒ 𝑒𝑥𝑝 (−𝐼) ≤ 1 − 𝐼 + 𝐼 2

Fig. 3. Types of p𝜆-amor

The basic sorts are: booleans (B), natural numbers (N) and real numbers (R). Standard sort-specific
operations like conjunction/disjunction (on B) and addition/subtraction (on N, R) are supported, as
are functions like exponential and logarithm (on R). We also support pairs of indices, index-level
functions and their applications. Finally, a discrete probability distribution over a finite set of indices
can be represented as an index term. Such an index term, denoted 𝜇, is a pair (𝐶𝑠 , 𝑀𝑠) of a carrier
set 𝐶𝑠 of indices and a measure𝑀𝑆 : 𝐶𝑆 → [0, 1].
Constraints are predicates over indices, like < and >. A particular constraint that we need for

analysing the RWM example in section 4.2 is 1 − 𝑥 ≤ 𝑒−𝑥 (this constraint holds for all 𝑥 : R.)
Similarly, a constraint that we need for analysing the multi-armed bandit problem in section 4.3 is
𝑒−𝑥 ≤ 1−𝑥+𝑥2 (this constraint holds for all 𝑥 : R > 0). Other constraints can be added axiomatically
for verifying programs, as is standard in refinement type systems.

Types. p𝜆-amor inherits standard types of intuitionistic affine logic including the affine function
space (⊸), multiplicative pairs (⊗), additive pairs (&), the affine sum type (+) and the exponential
(!). p𝜆-amor also has quantification over indices – both existential (∃𝑖:𝑆.𝜏) and universal (∀𝑖:𝑆.𝜏),
type quantification (∀𝛼.𝜏), and constraint types (𝐶 ⇒ 𝜏 and 𝐶&𝜏).
We also include length-refined list type 𝐿𝑖<𝑛 𝜏 (𝑖), which ascribes lists of length 𝑛 whose 𝑖th

element has type 𝜏 (𝑖), and singleton types over booleans, natural numbers and reals. Standard
bool, natural number and real number types can be coded using existential quantification over
indices. For example, if 𝑛 is of the sort N, then N(𝑛) is the singleton type of terms that represent
the number 𝑛. The usual type N can be defined as ∃𝑛.N(𝑛). All types are assorted into kinds, but
we elide the standard details of kinds here.

Cost in p𝜆-amor is tracked using a graded monad, PC(𝑎←𝜇) 𝜅 𝜏 (𝑎), which is doubly graded with
a static distribution 𝜇 = (𝐶𝑠 , 𝑀𝑠) and an expected cost 𝜅. The index 𝑎 may appear free in the
type 𝜏 but not in 𝜅. To a first approximation, this monadic type ascribes computations that, for
every 𝑎 ∈ 𝐶𝑠 , produces a result of type 𝜏 (𝑎) with probability 𝑀𝑠 (𝑎), and whose expected cost
(over 𝜇) is upper-bounded by 𝜅. The precise definition of the monadic type, shown in Figure 6,
stipulates the existence of a coupling between the static distribution 𝜇 over static indices and the
runtime distribution over language terms produced by the ascribed computation. This is unlike
prior work [Avanzini et al. 2019], which requires that these two distributions be the same. Our
generalisation is necessary to give a semantic interpretation to the coupling-based subtyping
introduced in Section 3.2, which prior work did not examine.

Finally, p𝜆-amor includes a modality [𝑝] 𝜏 for representing potentials at the type level. Like the
similar-looking modality of 𝜆-amor, our modality ascribes values of type 𝜏 paired with 𝑝 units
of potential. However, unlike 𝜆-amor, potentials in p𝜆-amor are used to offset expected cost, not
deterministic cost, as explained in Sections 3.2 and 3.5.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:9

Expressions and Values. The syntax of p𝜆-amor terms is described in Fig. 4. We only describe
key terms pertaining to the cost monad and the potential modality here. The monadic type has a
return (return 𝑒) and bind (bind 𝑥 = 𝑒1 in 𝑒2) to create and compose distributions over values of
the underlying type of the monad. As in 𝜆-amor, the tick construct (↑𝜅) adds a cost of 𝜅 units to the
computation. It can be placed appropriately within a program to model the program’s cost [Daniels-
son 2008]. The term toDist 𝑒 treats a list of real numbers, 𝑒 , as weights and converts them into a
probability distribution over a set of size length(𝑒). Finally, dynamic (discrete) distributions 𝜈 are
pairs (𝑉𝑑 , 𝑀𝑑), which mirror the structure of static distributions, except that, now, 𝑉𝑑 is a carrier
set of language terms (not static indices), and𝑀𝑑 is a function from that set to [0, 1].

The potential type [𝑝] 𝜏 has the same values as the type 𝜏 . This is because potentials are ghost –
they are used only in proofs and do not appear at runtime. Two primary operations on potentials
include releasing and storing them. They are required, for instance, to formalise the informal proof
of Theorem 1 from section 2.1. The intuitive idea is as follows. In the proof of the 𝑟𝑤𝑚 example, the
input potential of log(𝜙 (𝑡))/𝜂 units needs to be released before it can be used to pay for the cost of
the 𝑡𝑡ℎ round. Similarly, the remaining potential of log(𝜙 (𝑡 + 1))/𝜂 units needs to be stored back
before we can continue reasoning about the (𝑡 + 1)𝑡ℎ round. These steps are formalised in p𝜆-amor
using the constructs release and store, whichmirror similar constructs in 𝜆-amor but are generalised
to our probabilistic setting. The term release : [𝜅] 𝜏 ⊸ PC(𝑎←𝜇) (𝜅 + 𝜅′) 𝜏 ′ ⊸ PC(𝑎←𝜇′) 𝜅

′ 𝜏 ′,
releases the input potential of 𝜅 units from the first argument (of type [𝜅] 𝜏) to offset 𝜅 units of
cost from its second argument. The term store : 𝜏 [0/𝑎] ⊸ PC(𝑎←𝛿) 𝜅 ([𝜅] 𝜏) attaches potential of
𝜅 units to its argument (which is of type 𝜏 [0/𝑎]).

Additionally, p𝜆-amor introduces two new constructs for working with potentials. The term
Swap : ([𝑝] 𝜏1 ⊗ 𝜏2) ⊸ (𝜏1 ⊗ [𝑝] 𝜏2) transfers potential from the first component of a pair to the
second component whereas the term Split : [𝑝] 1 ⊸ ([𝑝1] 1 ⊗ [𝑝2] 1) divides the input potential
𝑝 into two positive parts 𝑝1 and 𝑝2 (s.t. 𝑝 ≥ 𝑝1 + 𝑝2). Inside the cost monad, the functionality of
Swap and Split can be simulated using the store and release constructs. Swap and Split add this
functionality outside the monad, which is convenient for typing some programs.

3.2 Type System
The typing judgment of p𝜆-amor, Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏 , is similar to that of 𝜆-amor syntactically. The
difference is that, in p𝜆-amor, we do not track multiplicities, so Ω is a context mapping non-affine
(!-ed) variables to their types only. We add multiplicities later in an extension of p𝜆-amor (Section 5).

Typing Rules. Selected typing rules of p𝜆-amor are shown in Fig. 4. T-ret says that if 𝑒 is of type 𝜏 ,
then return 𝑒 is a point distribution over type 𝜏 with 0 expected cost. T-bind composes probabilities
and expected cost sequentially. The static distribution of bind 𝑥 = 𝑒1 in 𝑒2 (in the conclusion) is
the convolution 𝜇 of the static distribution 𝜇1 of 𝑒1 and the static distribution family 𝜇2 (𝑎) of 𝑒2 for
every 𝑎 in the support of 𝜇1. The static cost of bind 𝑥 = 𝑒1 in 𝑒2 is the sum of the static cost of 𝑒1
and the expected cost of 𝑒2 (with the expectation taken over 𝜇1). The free index variables 𝑎 and 𝑏 in
𝜏2 are substituted by the projections of samples drawn from 𝜇. In contrast, the return and bind of
the prior work 𝜆-amor do not handle probabilities and work only in a deterministic setup.

T-store types store 𝑒 . It stores 𝜅 units of potential with 𝑒 , incurring a cost of 𝜅 units. Intuitively,
T-store ensures that potentials cannot be obtained for free: storing 𝜅 units of potential costs 𝜅 units.
Like T-ret, the distribution resulting from store 𝑒 is a point distribution.
T-release is the typing rule for release 𝑥 = 𝑒1 in 𝑒2. It offsets 𝜅 units of cost from the cost of

𝑒2 (which is 𝜅 + 𝜅′ units), by releasing the 𝜅 units of potential stored with 𝑒1. The rule is sound
due to the linearity of expectations. The distribution of the result is the same as the distribution of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

285:10 Vineet Rajani, Gilles Barthe, and Deepak Garg

Expressions 𝑒 ::= 𝑣 | 𝑥 | 𝑆 𝑒 | 𝑒1 𝑒2 | 𝑒 :: 𝑒 | let 𝑥 = 𝑒1 in 𝑒2 | if 𝑒 𝑒1 𝑒2 | () |
⟨⟨𝑒1, 𝑒2⟩⟩ | let⟨⟨𝑥,𝑦⟩⟩ = 𝑒1 in 𝑒2 | ⟨𝑒, 𝑒⟩ | fst(𝑒) | snd(𝑒) | inl(𝑒) |
inr(𝑒) | case 𝑒 of 𝑥 .𝑒 ; 𝑦.𝑒 | let !𝑥 = 𝑒1 in 𝑒2 | Split 𝑒 | Swap 𝑒

Values 𝑣 ::= () | tt | ff | 𝑍 | 𝑟 | 𝜆𝑥.𝑒 | fix 𝑥 .𝑒 | ⟨⟨𝑣1, 𝑣2⟩⟩ | ⟨𝑣, 𝑣⟩ | inl(𝑣) | inr(𝑣) |
! 𝑒 | nil | 𝑣1 :: 𝑣2 | return 𝑒 | bind 𝑒1 = 𝑥 in 𝑒2 | ↑𝐼 | 𝑡𝑜𝐷𝑖𝑠𝑡 𝑒 |
𝜈 | store 𝑒 | release 𝑥 = 𝑒1 in 𝑒2

Dynamic Distribution 𝜈 ::= (𝑉𝑑 , 𝑀𝑑)
𝑉𝑑 = Finite set of values and𝑀𝑑 : 𝑉𝑑 → [0, 1]

Θ;Δ ⊢ 𝜅 : R+ 𝛿0 = ({0}, {0 ↦→ 1})
Ψ;Θ;Δ;Ω; Γ ⊢ ↑𝜅 : PC(𝑎←𝛿0) 𝜅 1

T-tick

Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏 [0/𝑎] 𝛿0 = ({0}, {0 ↦→ 1})
Ψ;Θ;Δ;Ω; Γ ⊢ return 𝑒 : PC(𝑎←𝛿0) 0 𝜏

T-ret

Ψ;Θ;Δ;Ω; Γ1 ⊢ 𝑒1 : PC(𝑎←𝜇1) 𝜅1 𝜏1

Ψ;Θ, 𝑎;Δ;Ω; Γ2, 𝑥 : 𝜏1 ⊢ 𝑒2 : PC(𝑏←𝜇2) 𝜅2 𝜏2 𝜅 ≥ 𝜅1 +
∑︁

𝑎∈𝜋1 (𝜇1)
𝜋2 (𝜇1) 𝑎 · 𝜅2 𝑎

𝜇 = 𝜇1 ⊗ 𝑎.𝜇2 Ψ;Θ, 𝑐;Δ, 𝑐 ∈ 𝜋1 (𝜇) ⊢ 𝜏2 [𝜋1 (𝑐)/𝑎] [𝜋2 (𝑐)/𝑏] <: 𝜏
{𝑎, 𝑏} ∉ 𝜇, 𝜅, 𝜏 Θ;Δ ⊢ 𝜅1 : R+ Θ;Δ ⊢ 𝜅2 : R+

Ψ;Θ;Δ;Ω; Γ1 ⊕ Γ2 ⊢ bind 𝑥 = 𝑒1 in 𝑒2 : PC(𝑐←𝜇) 𝜅 𝜏
T-bind

Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏 [0/𝑎] Θ;Δ ⊢ 𝜅 : R+ 𝛿0 = ({0}, {0 ↦→ 1})
Ψ;Θ;Δ;Ω; Γ ⊢ store 𝑒 : PC(𝑎←𝛿0) 𝜅 ([𝜅] 𝜏)

T-store

Ψ;Θ;Δ;Ω; Γ1 ⊢ 𝑒1 : [𝜅] 𝜏
Ψ;Θ;Δ;Ω; Γ2, 𝑥 : 𝜏 ⊢ 𝑒2 : PC(𝑎←𝜇) (𝜅 + 𝜅

′) 𝜏 ′ Θ;Δ ⊢ 𝜅 : R+ Θ;Δ ⊢ 𝜅′ : R+

Ψ;Θ;Δ;Ω; Γ1 ⊕ Γ2 ⊢ release 𝑥 = 𝑒1 in 𝑒2 : PC(𝑎←𝜇) 𝜅
′ 𝜏 ′

T-release

Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝐿𝑖<𝑛 R(𝑝 (𝑖)) Θ;Δ ⊢ 𝑝 : N→ R Θ;Δ |= 𝑛 > 0
𝜇 = ({0 . . . 𝑛 − 1}, {𝑖 ↦→ 𝑝 (𝑖) | 𝑖 < 𝑛})

∑︁
𝑖<𝑛

𝑝 (𝑖) = 1

Ψ;Θ;Δ;Ω; Γ ⊢ 𝑡𝑜𝐷𝑖𝑠𝑡 𝑒 : PC(𝑖←𝜇) 0 N(𝑖)
T-toDist

Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : [𝑝] 1 Θ;Δ ⊢ 𝑝 ≥ 𝑝1 + 𝑝2 Θ;Δ ⊢ 𝑝1 : R+ Θ;Δ ⊢ 𝑝2 : R+

Ψ;Θ;Δ;Ω; Γ ⊢ Split 𝑒 : ([𝑝1] 1 ⊗ [𝑝2] 1)
T-split

Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : [𝑝] 𝜏1 ⊗ 𝜏2

Ψ;Θ;Δ;Ω; Γ ⊢ Swap 𝑒 : 𝜏1 ⊗ [𝑝] 𝜏2
T-swap

Ψ;Θ;Δ ⊢ 𝜏 <: 𝜏 ′ Ψ;Θ;Δ ⊢ 𝑝′ ≤ 𝑝

Ψ;Θ;Δ ⊢ [𝑝] 𝜏 <: [𝑝′] 𝜏 ′
sub-potential

Ψ;Θ;Δ ⊢ ∃𝛼 : 𝜇 ↔ 𝜇′ Ψ;Θ, 𝑎, 𝑎′;Δ, 𝛼 (𝑎, 𝑎′) > 0 ⊢ 𝜏 <: 𝜏 ′ Ψ;Θ;Δ ⊢ 𝜅 ≤ 𝜅′

Ψ;Θ;Δ ⊢ PC(𝑎←𝜇) 𝜅 𝜏 <: PC(𝑎′←𝜇′) 𝜅
′ 𝜏 ′

sub-coupling

Fig. 4. Language syntax, selected typing and subtyping rules of p𝜆-amor

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:11

↑𝜅 ⇓𝜅 ({()}, {() ↦→ 1})
E-tick

𝑒 ↓ 𝑣
return 𝑒 ⇓0 ({𝑣}, {𝑣 ↦→ 1})

E-ret

𝑒1 ↓ 𝑣1 𝑣1 ⇓𝜅1 (𝑉1, 𝑀1)
∀𝑎∈𝑉1. 𝑒2 [𝑎/𝑥] ↓ 𝑣2,𝑎 ∧ 𝑣2,𝑎 ⇓𝜅2,𝑎 𝜇2,𝑎 𝜅2 =

∑
𝑎∈𝑉1 (𝑀1 𝑎) · 𝜅2,𝑎 𝜇 = 𝜇1 ⊗ 𝑎.𝜇2,𝑎

bind 𝑥 = 𝑒1 in 𝑒2 ⇓𝜅1+𝜅2 M2 (𝜇)
E-bind

𝑒 ↓ 𝑣
store 𝑒 ⇓0 ({𝑣}, {𝑣 ↦→ 1})

E-store
𝑒1 ↓ 𝑣1 𝑒2 [𝑣1/𝑥] ↓ 𝑣2 𝑣2 ⇓𝜅 (𝑉 ,𝑀)

release 𝑥 = 𝑒1 in 𝑒2 ⇓𝜅 (𝑉 ,𝑀)
E-release

Fig. 5. Forcing evaluation of monadic terms in p𝜆-amor (selected rules)

𝑒2. T-store and T-release are direct generalisations of the corresponding typing rules from 𝜆-amor
(section 2.2) to the probabilistic setting.

Finally, T-toDist takes as input a list of real numbers that sum to 1, and converts the list into
a static distribution with indices ranging over the length of that list. The rule is useful for the
verification of algorithms like RWM (section 4.2), which explicitly manipulate finite distributions.

Subtyping. p𝜆-amor supports subtyping, formalised as the judgment Ψ;Θ;Δ ⊢ 𝜏 <: 𝜏 ′ (𝜏 is a
subtype of 𝜏 ′). Fig. 4 shows the two most important rules: sub-potential and sub-coupling. The
sub-potential rule allows reducing stored potential. The sub-coupling rule subtypes a monadic type
PC(𝑎←𝜇) 𝜅 𝜏 to another monadic type that has a higher 𝜅 and a different 𝜇′ that is related to 𝜇 by
some coupling. This subtyping rule allows the simplification of distributions annotating monadic
types, which is useful for the verification of complicated examples, as illustrated in section 4. A
similar rule occurs in the prior work [Avanzini et al. 2019], but that rule is only proved sound in a
setup where static and dynamic distributions coincide, which is not the case in p𝜆-amor.

3.3 Dynamics
p𝜆-amor uses a call-by-name (CBN) semantics with two evaluation relations: pure and forcing. The
pure evaluation, 𝑒 ↓ 𝑣 , is a relation between an expression 𝑒 and the value 𝑣 that it evaluates to
without evaluating any monadic subterms. This relation is standard, so we defer its details to the
technical appendix.
The forcing evaluation, 𝑒 ⇓𝜅 𝜈 , relates a monadic term of type PC(𝑎←𝜇) 𝜅

′ 𝜏 to a dynamic
distribution 𝜈 over values of the type family 𝜏 (𝑎), and a number 𝜅, which is the expected runtime
cost over that dynamic distribution. Selected rules of forcing evaluation are described in Fig. 5. Rule
E-ret says that if 𝑒 reduces to 𝑣 in the pure evaluation then return 𝑒 reduces to a point distribution
over 𝑣 in the forcing evaluation with 0 expected cost. E-store is similar due to the ghost nature of
potentials. Note that, in both rules, the output distribution is defined over a set of runtime values,
{𝑣}, unlike the typing-rules T-ret and T-store where the distributions are defined over a set of static
indices, {0}.
E-bind says that if 𝑒1 evaluates (with forcing) to a dynamic distribution 𝜈1 = (𝑉1, 𝑀1) with an

expected cost 𝜅1, and for 𝑎 ∈ 𝑉1, 𝑒2 [𝑎/𝑥] evaluates with an expected cost 𝜅2,𝑎 to a distribution 𝜈2,𝑎 ,
then the total expected cost of bind 𝑥 = 𝑒1 in 𝑒2 is 𝜅1 +

∑
𝑎∈𝑉1 𝑀1 (𝑎) · 𝜅2,𝑎 (the sum of 𝜅1 and the

expectation of cost 𝜅2,𝑎 taken over 𝜈1), and the resulting distribution isM2 (𝜈1 ⊗ 𝑎.𝜈2,𝑎) (the second
marginal of the convolution of 𝜈1 and 𝜈2,𝑎).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

285:12 Vineet Rajani, Gilles Barthe, and Deepak Garg

The expression release 𝑥 = 𝑒1 in 𝑒2 evaluates like a standard 𝑙𝑒𝑡 expression with the exception
that 𝑒2 evaluates to a distribution (rule E-release). Finally, E-tick defines the semantics of the
expression ↑𝜅 ; the rule says that this expression adds 𝜅 units to the runtime cost and returns the
point distribution over the unit type.

3.4 Relation between the Modalities and Soundness
There are two ways of describing costful probabilistic computations in p𝜆-amor. On one hand,
we can use the monadic type, PC(𝑎←𝜇) 𝜅 𝜏 , to describe a computation that yields a distribution
coupled to 𝜇, with expected cost no more than 𝜅. On the other hand, we can use a function
type, ([𝜅] 1 ⊸ PC(𝑎←𝜇) 0 𝜏), to the same effect. A function of this type takes a potential of 𝜅
units as an argument and consumes it fully to produce a distribution coupled to 𝜇. Conceptually,
both these types describe the computation of distributions coupled to 𝜇 with expected cost no
more than 𝜅, so we might expect coercions between these types. In fact, we can prove a stronger
result: These two types are isomorphic, i.e., PC(𝑎←𝜇) 𝜅 𝜏 � ([𝜅] 1 ⊸ PC(𝑎←𝜇) 0 𝜏). The functions
(𝜆𝑒.𝜆𝑝.release 𝑦 = 𝑝 in 𝑒) and (𝜆𝑓 . bind 𝑥 = store() in 𝑓 𝑥) are coercions from PC(𝑎←𝜇) 𝜅 𝜏 to
([𝜅] 1 ⊸ PC(𝑎←𝜇) 0 𝜏) and back, respectively. The two roundtrip compositions of these functions
are identity functions. A proof of this fact can be found in the technical appendix.

Our end-to-end soundness theorem (Theorem 6) for expected costs is that certainly terminating
computations (i.e., computations that terminate in all probabilistic branches, even those with 0
probability) of either of the two types above actually run with expected cost no more than 𝜅 . Note
that our type system does not enforce termination: If a program does not certainly terminate,
Theorem 6 holds vacuously. In particular, our type theory cannot be used to reason about programs
that terminate in an almost sure sense [Bournez and Garnier 2005; McIver and Morgan 2005],
so programs like the coupon collector and rejection samplers cannot be analysed using p𝜆-amor.
Extending our type theory to handle variants of almost sure termination is an interesting direction
of future work.

We prove Theorem 6 using a model of types that is described in section 3.5. Using the fundamental
theorem of the model (Theorem 7), we can also prove that a computation of either type above
outputs a distribution coupled to 𝜇, but we elide this aspect here.

Theorem 6 (Soundness for expected costs).
(1) If ⊢ 𝑒 : PC(𝑎←𝜇) 𝜅 𝜏 and 𝑒 ⇓𝜅′𝑡 𝜈 then 𝜅′ ≤ 𝜅.
(2) If ⊢ 𝑒 : [𝜅] 1 ⊸ PC(𝑎←𝜇) 0 𝜏 and 𝑒 () ⇓𝜅

′
𝑡 𝜈 then 𝜅′ ≤ 𝜅.

3.5 Model of Types
To prove Theorem 6, we define a Kripke step-indexed logical relation model for p𝜆-amor’s types.
Our model extends the model of 𝜆-amor [Rajani et al. 2021] by adding support for probabilistic
computation. The key insights in the design of our model are the use of probabilistic coupling to
relate static and dynamic distributions and our handling of potentials.
Step-indices [Ahmed 2004; Mitchell 1996], denoted 𝑇 , are integral to our model but they are

purely an artefact of the meta-theory. They avoid circularity arising from the impredicative type
quantifier. We note that some prior work uses step-indexed logical relations to reason about equi-
termination or may/must termination of probabilistic programs [Aguirre and Birkedal 2023; Wand
et al. 2018]. In those settings, step-indices play a significant role in the model. In contrast, because
we do not enforce termination and only give guarantees to programs that certainly terminate, our
use of step-indices is fairly standard. Consequently, we do not discuss step indices in detail here.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:13

We augment the evaluation relations, both pure and forcing, with an additional natural number
𝑇 , which is the number of rules used in the derivation of the relation. The augmented judgments
are written 𝑒 ↓𝑇 𝑣 and 𝑒 ⇓𝜅

𝑇
𝑣 , respectively.

Fig. 6 shows selected cases of the definition of the semantic model, which consists of four relations.
Next, we describe these relations.

Value Relation. The value interpretation of a type 𝜏 , denoted byVJ𝜏K, is a set of triples (𝑝,𝑇 , 𝑣)
containing a potential 𝑝 , a step index 𝑇 and a value 𝑣 . The intuitive meaning of the triple is that 𝑣
is (semantically) of type 𝜏 , and the expected potential stored with 𝑣 and its subterms is no more
than 𝑝 . We describe a few cases of the value relation here, starting with some standard affine types
constructors.
The interpretation of the tensor (⊗) pair says that the available potential must be at least the

sum of the potentials required for interpreting the two components. This is because both the
components of a tensor pair can be used simultaneously by the context. The interpretation of the
with (&) pair is very different. Since only one, but not both, of its components can be used by the
context, we only need potential to cover each of the components separately.

The interpretation of the function type 𝜏1 ⊸ 𝜏2 says that potential 𝑝 is sufficient for 𝜆𝑥 .𝑒 at the
type if for any substitution 𝑒′ of the input type 𝜏1, which comes with its own potential 𝑝′, the total
potential 𝑝 + 𝑝′ is sufficient to interpret the body 𝑒 [𝑒′/𝑥] at the result type 𝜏2.

Next, we describe the interpretation of !𝜏 . Recall that the affine type !𝜏 means “any finite number
of copies of 𝜏”. Hence, the potential needed to interpret !𝑒 in !𝜏 is∞ if 𝑒 at type 𝜏 needs any non-zero
potential. However, if the potential needed for 𝑒 at type 𝜏 is 0, then we can interpret !𝑒 at type !𝜏
with any potential.

The interpretation of the potential modality ([𝑛] 𝜏) says that the potential 𝑝 must be at least 𝑛
plus the potential needed to interpret 𝑣 at the type 𝜏 . The ghost nature of potential becomes explicit
in this definition, as the same value 𝑣 must occurs in the interpretations of [𝑛] 𝜏 and 𝜏 .
In the interpretation of the monadic type PC(𝑎←𝜇) 𝜅 𝜏 , we have to account for the probability

and cost effects simultaneously. In particular, we have to stipulate a relation between the dynamic
distribution (over values) obtained at runtime and the static distribution (over indices) that occurs
in the type. We achieve this by requiring that there be a coupling 𝜌 relating the static and the
dynamic distributions, such that: (a) for every pair of index term 𝑖 and value 𝑣 ′𝑗 in the support of the
coupling, 𝑣 ′𝑗 semantically types at 𝜏 [𝑖/𝑎] with some potential 𝑝 𝑗 , and (b) the sum of the expected
runtime cost 𝜅′ and the expected value (over the coupling) of the potentials 𝑝 𝑗 is no more than the
sum of the available potential 𝑝 and the static cost 𝜅 in the monadic type. The sum 𝑝 + 𝜅 on the
right hand side of the inequality in clause (b) justifies why it is sound to offset cost using available
potential, as in the rule T-release.

Expression Relation. The expression interpretation, EJ𝜏K, is standard. A triple of the form (𝑝,𝑇 , 𝑒)
is in the expression relation at type 𝜏 if the value 𝑣 obtained from the pure evaluation of 𝑒 is in the
value relation at the same type with the same potential (pure evaluation has no cost, so it does not
consume potential).

Substitution Relations. The interpretations of the affine (Γ) and the non-affine context (Ω) define
semantically-typed variable substitutions. The relation GJΓK for the affine context says that a
substitution is semantically well-typed with a potential if the potential is enough to interpret each
expression in the range of the substitution at the respective type provided by Γ. For the non-affine
context, the interpretation GJΩK is similar, except that the required potential can be finite only if
all substituted expressions require a zero potential, else it must be∞.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

285:14 Vineet Rajani, Gilles Barthe, and Deepak Garg

VJ𝜏1 ⊗ 𝜏2K ≜ {(𝑝,𝑇 , ⟨⟨𝑣1, 𝑣2⟩⟩) | ∃𝑝1, 𝑝2.𝑝1 + 𝑝2 ≤ 𝑝 ∧ (𝑝1,𝑇 , 𝑣1) ∈ VJ𝜏1K
∧ (𝑝2,𝑇 , 𝑣2) ∈ VJ𝜏2K}

VJ𝜏1 & 𝜏2K ≜ {(𝑝,𝑇 , ⟨𝑣1, 𝑣2⟩) | (𝑝,𝑇 , 𝑣1) ∈ VJ𝜏1K ∧ (𝑝,𝑇 , 𝑣2) ∈ VJ𝜏2K}
VJ𝜏1 ⊸ 𝜏2K ≜ {(𝑝,𝑇 , 𝜆𝑥 .𝑒) | ∀𝑝′, 𝑒′,𝑇 ′<𝑇 .(𝑝′,𝑇 ′, 𝑒′) ∈ EJ𝜏1K =⇒

(𝑝 + 𝑝′,𝑇 ′, 𝑒 [𝑒′/𝑥]) ∈ EJ𝜏2K}
VJ!𝜏K ≜ {(𝑝,𝑇 , !𝑒) | (0,𝑇 , 𝑒) ∈ EJ𝜏K} ∪

{(∞,𝑇 , !𝑒) | ∃𝑝′ .𝑝′ > 0 ∧ (𝑝′,𝑇 , 𝑒) ∈ EJ𝜏K}
VJ[𝑛] 𝜏K ≜ {(𝑝,𝑇 , 𝑣) | ∃𝑝′ .𝑝′ + 𝑛 ≤ 𝑝 ∧ (𝑝′,𝑇 , 𝑣) ∈ VJ𝜏K}}
VJPC(𝑎←𝜇) 𝜅 𝜏K ≜ {(𝑝,𝑇 , 𝑣) | 𝜇 = (𝐶𝑠 , 𝑀𝑠) ∧ ∀𝜅′, 𝑣 ′,𝑇 ′< 𝑇 .

𝑣 ⇓𝜅′
𝑇 ′ (𝑉𝑑 , 𝑀𝑑) ∧𝑉𝑑 = {𝑣 ′1, . . . , 𝑣 ′|𝑉𝑑 |−1} =⇒

∃𝜌 : (𝐶𝑠 , 𝑀𝑠) ↔ (𝑉𝑑 , 𝑀𝑑). ∃𝑝0, . . . , 𝑝 |𝑉𝑑 |−1.
𝑎) ∀(𝑖, 𝑣 ′𝑗) ∈ 𝐶𝑠 ×𝑉𝑑 . 𝜌 (𝑖, 𝑣 ′𝑗) ≠ 0 =⇒

(𝑝 𝑗 ,𝑇 − 𝑇 ′, 𝑣 ′𝑗) ∈ VJ𝜏 [𝑖/𝑎]K
𝑏) 𝜅′ +∑𝑖∈𝐶𝑠

∑
𝑣′
𝑗
∈𝑉𝑑 (𝑝 𝑗 · 𝜌 (𝑖, 𝑣 ′𝑗)) ≤ 𝑝 + 𝜅}

EJ𝜏K ≜ {(𝑝,𝑇 , 𝑒) | ∀ 𝑇 ′<𝑇, 𝑣 .𝑒 ↓𝑇 ′ 𝑣 =⇒ (𝑝,𝑇 − 𝑇 ′, 𝑣) ∈ VJ𝜏K}
GJΓK ≜ {(𝑝,𝑇 , 𝜌𝑙) | ∃𝑓 : V𝑎𝑟𝑠 → R+. (∀𝑥 ∈ dom(Γ). (𝑓 (𝑥),𝑇 , 𝜌𝑙 (𝑥)) ∈ EJΓ(𝑥)K)

∧ (∑𝑥∈dom(Γ) 𝑓 (𝑥) ≤ 𝑝)}
GJΩK ≜ {(𝑝,𝑇 , 𝜌𝑚) | ∃𝑓 : V𝑎𝑟𝑠 → R+ .∀𝑥 ∈ dom(Ω). (𝑓 (𝑥),𝑇 , 𝜌𝑚 (𝑥)) ∈ EJΩ(𝑥)K

∧ (∃𝑥 ∈ dom(Ω). 𝑓 (𝑥) > 0) =⇒ 𝑝 = ∞}

Fig. 6. Model of p𝜆-amor types (selected cases)

Fundamental Theorem. Next, we state the standard fundamental theorem for our logical relation.
The theorem says that syntactically well-typed open terms are in the semantic interpretations of
their respective types, provided that the closing substitutions are semantically well-typed. The
proof of the fundamental theorem proceeds by induction on the typing derivation. In the proof for
the monadic type, we show the existence of a coupling between the static and runtime distributions
in the cases, as required by the definition of the logical relation. To show the soundness of the
sub-coupling rule, we rely on the fact that the composition of two couplings is also a coupling.
The full proof of the fundamental theorem is in our technical appendix. The soundness theorem
(Theorem 6) is a direct corollary of the fundamental theorem.

Theorem 7 (Fundamental theorem). Ψ;Θ;Δ;Ω; Γ ⊢ 𝑒 : 𝜏 ∧ (𝑝𝑙 ,𝑇 , 𝜌𝑙) ∈ GJΓ 𝜃 𝜄K ∧ (𝑝𝑚,𝑇 , 𝜌𝑚) ∈
GJΩ 𝜃 𝜄K ∧ . |= Δ 𝜄 =⇒ (𝑝𝑙 + 𝑝𝑚,𝑇 , 𝑒 𝜌𝑙 𝜌𝑚) ∈ EJ𝜏 𝜃 𝜄K.

4 Examples
In this section, we present three example programs and establish cost bounds for them in p𝜆-amor.
We begin with a simple example, which we call randomised response. This example is not based on
online learning and it is meant to further illustrate the workings of p𝜆-amor. As our second example,
we revisit the Randomised Weighted Majority algorithm from section 2.1. Our third example is
the EXP3 algorithm for the multi-armed bandit problem [Auer et al. 2002] for which we derive a
closed-form bound on the expected loss.

Our technical appendix includes an additional example – a bound on the expected regret of the
stochastic gradient descent algorithm [Bansal and Gupta 2019; Robbins and Monro 1951].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:15

1 𝑅𝑅 : ∀𝑣 : N, 𝑣 ′ : N, 𝑘 : N.
2 !N(𝑣) ⊸ !N(𝑣 ′) ⊸ !N(𝑘) ⊸

[
(2 − 1

2𝑘−1)
]
1 ⊸ PC(𝑎←𝛿0) 0 N

3 where N ≜ (∃𝑣 ′′ : N. N(𝑣 ′′)) and 𝛿0 ≜ ({0}, (0 ↦→ 1)) .
4 fix 𝑅𝑅.Λ.Λ.Λ.𝜆 𝑣𝑙 𝑣𝑙 ′ 𝑛 𝑝.

5 let! 𝑣𝑙𝑢 = 𝑣𝑙 in let! 𝑣𝑙 ′𝑢 = 𝑣𝑙 ′ in let! 𝑛𝑢 = 𝑛 in
6 matchN 𝑛𝑢

7 ,Z ↦→ return (Ex 𝑣𝑙 ′𝑢)
8 , S 𝑛′ ↦→
9 release _ = 𝑝 in bind _ = ↑1 in
10 bind 𝑥 = Unif 1 in
11 matchN 𝑥

12 ,Z ↦→ bind 𝑝′ = Store () in 𝑅𝑅 !𝑣𝑙𝑢 !𝑣𝑙 ′𝑢 !𝑛′ 𝑝′

13 , S 𝑥 ′ ↦→ return (Ex 𝑣𝑙𝑢)

Fig. 7. Cost analysis of randomised response in p𝜆-amor

4.1 Randomised Response
Our first example, randomised response or 𝑅𝑅, is shown in Fig. 7. 𝑅𝑅 is a recursive function
which runs for at most 𝑘 rounds. In each round, it flips a fair coin (line 11). If the outcome is tails
(represented as 1; heads is 0) the function returns the value 𝑣𝑙 , otherwise it recurses. If 𝑘 rounds
are exhausted without any tails, then the function returns the other value 𝑣𝑙 ′. Each recursive call
incurs a unit cost, which is modelled with the ↑1 operation on line 10. Using p𝜆-amor, we show
that the expected cost of 𝑅𝑅 is bounded by (2 − 1

2𝑘−1) (Theorem 8).

Theorem 8. The expected cost of 𝑅𝑅 (Fig. 7) is upper-bounded by (2 − 1
2𝑘−1).

We start with a description of 𝑅𝑅’s type. 𝑅𝑅 takes four arguments: the two possible result values
𝑣𝑙 and 𝑣𝑙 ′; a natural number 𝑛 of the singleton type N(𝑘) (so, 𝑛 represents the static index 𝑘); and
a potential 𝑝 of type

[
(2 − 1

2𝑘−1)
]
1. The underlying type 1 in 𝑝’s type means that 𝑝 does carry a

useful runtime value – 𝑝’s only purpose is to provide potential. Upon completion, 𝑅𝑅 returns one
of the two input values, so a value of type N ≜ ∃𝑣 ′′ : N. N(𝑣 ′′). The overall output type of 𝑅𝑅 is
the monadic type PC(𝑎←𝛿0) 0 (∃𝑣

′′ : N. N(𝑣 ′′)). This type has 0 residual expected cost as the input
potential 𝑝 is sufficient to account for the expected runtime cost of 𝑅𝑅. The output type also says
that the final distribution is a point distribution over N. This distribution is an approximation of
𝑅𝑅’s actual output distribution, which is 𝑣𝑙 with probability 1 − 1/2𝑘−1 and 𝑣𝑙 ′ with probability
1/2𝑘−1. This type-level approximation is established using the sub-coupling subtyping rule.

When 𝑛 = 0 (i.e., 𝑘 = 0), the code returns immediately with 0 cost (line 7) and establishing the
output type is trivial. When 𝑛 ≠ 0 (i.e., 𝑘 ≠ 0), 𝑅𝑅 uses the release construct on line 9 to release 𝑝’s
potential of 2 − 1

2𝑘−1 units. Of these, 1 unit is consumed immediately by ↑1 later on the same line.
Hence, we have to show that the expected cost of lines 10–13 is at most 1 − 1

2𝑘−1 . For this, we
examine lines 10–13. Here, the code tosses a fair coin (line 10) and depending on the outcome,
either returns immediately with 0 cost (line 13) or recurses with third parameter 𝑛′ : N(𝑘 − 1)
instead of 𝑛 : N(𝑘) (line 12). The recursive call needs potential 2− 1

2𝑘−2 , which is formally passed via
the parameter 𝑝′. Now, potential is stored in 𝑝′ using the store construct, whose cost is exactly the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

285:16 Vineet Rajani, Gilles Barthe, and Deepak Garg

D0:

.;Θ;Δ;Ω; Γ ⊢ 𝑝 : 𝑇𝑝
𝐷1

.;Θ;Δ;Ω; Γ ⊢ release _ = 𝑝 in 𝐸1 : 𝑇𝑟

D1:

.;Θ;Δ;Ω; . ⊢ ↑1 : PC(𝑎←𝛿0) 1 1
𝐷2

.;Θ;Δ;Ω; . ⊢ bind _ = ↑1 in 𝐸2 : 𝑇𝑟1
.;Θ;Δ;Ω; . ⊢ 𝐸1 : 𝑇𝑟1

D2:

.;Θ;Δ;Ω; . ⊢ Unif 1 : PC(𝑎′←𝜇) 0 N(𝑎)
...

.;Θ;Δ;Ω; . ⊢ bind 𝑥 = Unif 1 in matchN . . . : 𝑇𝑟2′

.;Θ;Δ;Ω; . ⊢ bind 𝑥 = Unif 1 in matchN . . . : 𝑇𝑟2
sub-coupling

.;Θ;Δ;Ω; . ⊢ 𝐸2 : 𝑇𝑟2

D3:

𝐷4
...

.;Θ;Δ, . . . ;Ω; . ⊢ bind 𝑝′ = Store () in 𝑅𝑅 !𝑣𝑙𝑢 !𝑣𝑙 ′𝑢 !𝑛′ 𝑝′ : 𝑇𝑟3′

.;Θ;Δ, . . . ;Ω; . ⊢ bind 𝑝′ = Store () in 𝑅𝑅 !𝑣𝑙𝑢 !𝑣𝑙 ′𝑢 !𝑛′ 𝑝′ : 𝑇𝑟3
sub-coupling

D4:

.;Θ;Δ, . . . ;Ω; . ⊢ Store () : PC(_←𝛿0)

(
2 − 1

2𝑘−2

) ([(
2 − 1

2𝑘−2

)]
1
)

Θ ≜ 𝑣 : N, 𝑣 ′ : N, 𝑘 : N, 𝑘 ′ : N
Δ ≜ 𝑘 ′ + 1 = 𝑘

Γ ≜ 𝑝 : 𝑇𝑝
Ω ≜ 𝑅𝑅 : 𝑇0, 𝑣𝑙𝑢 : N(𝑣),

𝑣𝑙 ′𝑢 : N(𝑣 ′), 𝑛𝑢 : N(𝑘)
𝑛′ : N(𝑘 ′)

𝑇𝑟 ≜ PC(𝑎←𝛿0) 0 N
𝑇𝑟1 ≜ PC(𝑏←𝛿0) (2 −

1
2𝑘−1) N

𝑇𝑟2 ≜ PC(𝑐←𝛿0) (1 −
1

2𝑘−1) N
𝑇𝑟2′ ≜ PC(𝑐←𝜇′) (1 −

1
2𝑘−1) N

𝑇𝑟3 ≜ PC(𝑑←𝛿0)

(
2 − 1

2𝑘−2

)
N

𝑇𝑟3′ ≜ PC(𝑑←𝛿0⊗𝛿0)

(
2 − 1

2𝑘−2

)
N

𝜇 ≜
(
{0, 1}, (0 ↦→ 1

2 , 1 ↦→
1
2)
)

𝜇′ ≜ 𝜇 ⊗ 𝛿0

Fig. 8. Derivation snippet

potential stored, i.e., 1− 1
2𝑘−2 . Hence, the expected cost of lines 10–13 is

1
2 ·0+

1
2 ·

(
2 − 1

2𝑘−2

)
= 1− 1

2𝑘−1 ,
as needed.
We show the formal typing derivations of some of the key steps of this reasoning in Fig. 8.

Derivation D0 of the release construct from line 9 gives 0 costs to the release construct (in type 𝑇𝑟)
after checking (via derivation D1) that the potential in 𝑝 , i.e., (2 − 1

2𝑘−1) units, equals the cost of the
continuation, which is denoted 𝐸1. 𝐸1 ≜ bind _ = ↑1 in 𝐸2.
𝐸1’s type derivation is 𝐷1. The overall cost of 𝐸1, reflected in 𝐸1’s type, 𝑇𝑟1, is (2 − 1

2𝑘−1) units
as explained above. Of this, cost 1 is incurred by the ↑1 construct as shown in the derivation D1,
and the rest (1 − 1

2𝑘−1) is incurred by the continuation of ↑1, which is denoted 𝐸2. 𝐸2 ≜ bind 𝑥 =

Unif 1 in matchN2
𝐸2’s cost, 1 − 1

2𝑘−1 , is reflected in its type 𝑇𝑟2. This type is established in derivation D2. 𝐸2 tosses
a coin and branches on the outcome 𝑥 using the bind construct. Following the rule T-bind, D2
establishes that the expected cost of the two branches equals 1 − 1

2𝑘−1 . This reasoning proceeds as
2Unif 1 samples uniformly from {0, 1}. It is defined using the toDist construct.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:17

explained earlier: The 𝑥 = 0 case has cost 2 − 1
2𝑘−2 as established in derivation D3, while the case

𝑥 = 1 has cost 0 (derivation not shown here). Their average is 1 − 1
2𝑘−1 , as required.

Finally, we explain the use of the subtyping rule sub-coupling in this example. This rule is used
to type the two bind expressions on lines 9 and 12. We start with the bind on line 12, which is typed
in derivation D3. Here, using the T-bind rule, we know that the distribution of the bind expression
will have the static distribution 𝛿0 ⊗ _.𝛿0, as in the type 𝑇𝑟3′ . Using the fact that there is a trivial
coupling between 𝛿0 ⊗ _.𝛿0 and 𝛿0, we can give the bind expression the simpler type 𝑇𝑟2, which
has the static distribution 𝛿0. A similar use of sub-coupling occurs in derivation D2 in typing the
bind on line 9. In this case, we replace the distribution 𝜇 ⊗ _.𝛿0 with 𝛿0, relying on the fact that
every distribution is coupled to 𝛿0. We find such simplifications of the static distributions useful in
typing later examples as well.

4.2 Randomised Weighted Majority from Section 2.1, Revisited
We revisit our example from section 2.1. We describe how p𝜆-amor can be used to formally establish
the key step in the proof of Theorem 1, namely, that the expected cost of an iteration of 𝑟𝑤𝑚 is
upper bounded by the change in potential across that iteration. Fig. 9 shows a re-encoding of 𝑟𝑤𝑚,
this time in p𝜆-amor’s syntax. We describe the changes relative to the earlier encoding of 𝑟𝑤𝑚 in
Fig. 1, and focus on cost-related changes as the other changes due to affineness and refinements
are routine.
First, we describe type-level changes. The revised type of 𝑟𝑤𝑚 has three key aspects: 1) The

type carries a condition on the weights of the experts, namely, that each weight ≥ 1/(1 − 𝜂)𝑟 . As
mentioned earlier, this constraint ensures that the potential (described next) remains non-negative;
2) The 𝑟𝑤𝑚 function has an additional argument – the potential – whose type depends on the
weight of the experts. Specifically, 𝑟𝑤𝑚 requires an input potential of (𝑙𝑜𝑔(∑𝑖≤𝑛𝑤 𝑖))/𝜂 units as
we saw in section 2.1; and 3) The output type includes the remaining potential (𝑙𝑜𝑔 (∑𝑖≤𝑛𝑤

′ 𝑖))/𝜂,
where 𝑤 ′ 𝑖 is the revised weight of the 𝑖𝑡ℎ expert after the round. Note that, the output type is
monadic with 0 cost as the cost of 𝑟𝑤𝑚 is covered entirely by its potential. The output type’s
distribution is a point distribution, which is obtained via the sub-coupling rule.
The type for𝑚𝑎𝑘𝑒𝑃𝑟𝑒𝑑 follows the same idea and its revised type also has potentials. On the

other hand, 𝑐ℎ𝑔𝑊𝑡𝑠 is a pure function so its revised type does not have potentials. However, the
revised type encodes the invariant that our condition on weights, point 1 above, holds.
At the code level, the key changes in the 𝑟𝑤𝑚 function pertain to potentials. If the number of

remaining rounds is zero, then the input potential is attached to the nil using the swap function
(line 10), wrapped in an existential and returned. Otherwise, the input potential, which equals
(𝑙𝑜𝑔(𝜙 (𝑡)))/𝜂, is the split into two parts (line 13): (i) ℎ𝑒𝑟𝑒 , which is passed to the𝑚𝑎𝑘𝑒𝑃𝑟𝑒𝑑 function
on line 14 and consumed in the current round; and (ii) 𝑙𝑎𝑡𝑒𝑟 , which is used recursively on line
17. The potential ℎ𝑒𝑟𝑒 equals the expected loss of the current round (E[𝑙𝑜𝑠𝑠 (𝑡)], as required by
Theorem 1) whereas 𝑙𝑎𝑡𝑒𝑟 equals the potential for the next round ((𝑙𝑜𝑔(𝜙 (𝑡 + 1)))/𝜂). As shown in
equation (1) in section 2.1, the sum of ℎ𝑒𝑟𝑒 and 𝑙𝑎𝑡𝑒𝑟 is no more than the input potential.
The𝑚𝑎𝑘𝑒𝑃𝑟𝑒𝑑 function works as follows. First, on line 12, it releases the input potential that

was passed by 𝑟𝑤𝑚. Second, on line 13, it samples an expert. Next, it looks up the advice of the
sampled expert on line 14 and inserts a ↑ to incur a cost equal to the expected loss of the current
round (line 15). This cost is 1 if the chosen expert’s advice is different from the actual answer and 0
otherwise. Finally, line 16 returns the chosen prediction wrapped in an existential to match the
boolean return type B ≜ ∃𝑏.B(𝑏).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

285:18 Vineet Rajani, Gilles Barthe, and Deepak Garg

1 𝑟𝑤𝑚 : ∀𝑟 : N, 𝑛 : N, 𝑎𝑑𝑣 : N→ N→ B, 𝜂 : R+, 𝑎𝑛𝑠 : N→ B.
2 !N(𝑟) ⊸ !𝐿𝑖<𝑛 (N(𝑖) ⊸ B(𝑎𝑑𝑣 𝑟 𝑖)) ⊸ !R(𝜂)
3 ⊸ ∀𝑤 : N→ R+. !𝐿𝑖<𝑛 (𝑤 𝑖 ≥ 1/(1 − 𝜂)𝑟 & R(𝑤 𝑖))
4 ⊸

[
𝑙𝑜𝑔 (∑𝑖≤𝑛𝑤 𝑖)/𝜂

]
1

5 ⊸ PC(𝑎←𝛿0) 0 (∃𝑤 ′ : N→ R+.
[
𝑙𝑜𝑔 (∑𝑖≤𝑛𝑤

′ 𝑖)/𝜂
]
(𝐿𝑖<𝑟B))

6 fix 𝑟𝑤𝑚.Λ.Λ.Λ.Λ.Λ.𝜆 𝑟𝑜 𝑒𝑥𝑝 𝑒𝑡𝑎.Λ.𝜆 𝑝 𝑤𝑡𝑠.

7
...

8 matchN 𝑟𝑜𝑢𝑛𝑑𝑢

9 ,Z ↦→
10 let⟨⟨𝑥,𝑦⟩⟩ = Swap (𝑝, nil) in return (Ex 𝑦)
11 , S 𝑟𝑛𝑑 ↦→
12 let! 𝑎𝑑𝑣𝑠𝑢 = 𝑔𝑒𝑡𝐴𝑑𝑣𝑖𝑐𝑒 {} !𝑟𝑜𝑢𝑛𝑑𝑢 !𝑒𝑥𝑝𝑒𝑟𝑡𝑠𝑢 in
13 let ⟨⟨ℎ𝑒𝑟𝑒, 𝑙𝑎𝑡𝑒𝑟 ⟩⟩ = Split 𝑝 in
14 bind 𝑝𝑟 =𝑚𝑎𝑘𝑒𝑃𝑟𝑒𝑑 {} {} {} {} {} {} {} ℎ𝑒𝑟𝑒 !𝑎𝑑𝑣𝑠𝑢 !𝑤𝑡𝑠𝑢 in
15 let! 𝑎𝑛𝑠𝑢 = 𝑔𝑒𝑡𝐴𝑛𝑠𝑤𝑒𝑟 {} {} !𝑟𝑜𝑢𝑛𝑑𝑢 in
16 letEx 𝑛𝑤 = 𝑐ℎ𝑔𝑊𝑡𝑠 {} {} {} !𝑤𝑡𝑠𝑢 !𝑎𝑑𝑣𝑠𝑢 !𝑎𝑛𝑠𝑢 !𝑒𝑡𝑎𝑢 in
17 bind 𝑟𝑒𝑐 = 𝑟𝑤𝑚 {} {} {} {} !𝑟𝑛𝑑 !𝑒𝑥𝑝𝑒𝑟𝑡𝑠𝑢 !𝑒𝑡𝑎𝑢 {} 𝑛𝑤 𝑙𝑎𝑡𝑒𝑟 in
18 letEx 𝑟𝑒𝑐′ = 𝑟𝑒𝑐 in
19 bind 𝑟 = (release 𝑝𝑟𝑠 = 𝑟𝑒𝑐′ in Store (𝑝𝑟 :: 𝑝𝑟𝑠)) in
20 return (𝐸𝑥 𝑟)

1 𝑚𝑎𝑘𝑒𝑃𝑟𝑒𝑑 : ∀𝑛 : N, 𝑎𝑑𝑣 : N→ B, 𝜂 : R+,
2 𝑎𝑛𝑠 : B,𝑤 : N→ R+ .
3 ∀𝑝 : R+.(𝑝 ≥ 𝐸𝐿) ⇒ [𝑝] 1
4 ⊸ 𝐿𝑖<𝑛 B(𝑎𝑑𝑣 𝑖) ⊸ 𝐿𝑖<𝑛 R(𝑤 𝑖)
5 ⊸ PC(𝑎←𝛿0) 0 (B)
6 𝑚𝑎𝑘𝑒𝑃𝑟𝑒𝑑 ≜

7 Λ.Λ.Λ.Λ.Λ.Λ.Λ.𝜆 𝑝𝑜 𝑎𝑑𝑣𝑠 𝑤𝑡𝑠.

8 let! 𝑤𝑡𝑠𝑢 = 𝑤𝑡𝑠 in
9 letEx 𝑝ℎ𝑖 = 𝑠𝑢𝑚 !𝑤𝑡𝑠𝑢 in
10 let! 𝑝ℎ𝑖𝑢 = 𝑝ℎ𝑖 in
11 let! 𝑝𝑟𝑜𝑏𝑢 =𝑚𝑎𝑝 !(𝜆𝑥 .𝑥/𝑝ℎ𝑖𝑢) !𝑤𝑡𝑠𝑢 in
12 release _ = 𝑝𝑜 in
13 bind 𝑥 = toDist 𝑝𝑟𝑜𝑏𝑢 in
14 let 𝑝𝑟𝑒𝑑 = 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥 𝑎𝑑𝑣𝑠 in
15 bind _ = ↑(𝑙𝑜𝑠𝑠 (𝑎𝑑𝑣 𝑥 ′) 𝑎𝑛𝑠) in
16 return (𝐸𝑥 𝑝𝑟𝑒𝑑)

where,
𝐸𝐿 ≜

∑
𝑖<𝑛 (𝑝𝑟𝑜𝑏 𝑖) · (𝑙𝑜𝑠𝑠 (𝑎𝑑𝑣 𝑖) (𝑎𝑛𝑠))

𝑝𝑟𝑜𝑏 ≜ 𝜆𝑖.(𝑤 𝑖)/𝜙
𝑙𝑜𝑠𝑠 ≜ 𝜆𝑓 𝑠.if 𝑓 == 𝑠 then 0 else 1
𝜙 ≜

∑
𝑖<𝑛𝑤 𝑖

1 𝑐ℎ𝑔𝑊𝑡𝑠 : ∀𝑛, 𝑟, 𝜂, 𝑎′, 𝑎𝑑𝑣 : N→ B,𝑤 : N→ R.
2 !𝐿𝑖<𝑛 (𝑤 𝑖 ≥ 1/(1 − 𝜂)𝑟 & R(𝑤 𝑖))
3 ⊸!𝐿𝑖<𝑛B(𝑎𝑑𝑣 𝑖) ⊸!B(𝑎′) ⊸!R(𝜂)
4 ⊸ ∃𝑤 ′ : N→ R+.
5 𝐿𝑖<𝑛 (𝑤 ′ 𝑖 ≥ 1/(1 − 𝜂)𝑟−1 & R(𝑤 ′ 𝑖))
6 𝑐ℎ𝑔𝑊𝑡𝑠 ≜

7 Λ.Λ.Λ.Λ.Λ.𝜆 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑎𝑑𝑣𝑠 𝑎𝑛𝑠 𝑒𝑡𝑎.

8 let! 𝑤𝑡𝑠𝑢 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 in let! 𝑎𝑑𝑣𝑠𝑢 = 𝑎𝑑𝑣𝑠 in
9 let! 𝑎𝑛𝑠𝑢 = 𝑎𝑛𝑠 in let! 𝑒𝑡𝑎𝑢 = 𝑒𝑡𝑎 in
10 match !𝑤𝑡𝑠𝑢 with
11 , nil ↦→ Ex Λ. nil
12 ,𝑤𝑡 :: 𝑤𝑡𝑠 ↦→
13 let 𝑤𝑡 ′ = 𝑤𝑡 in
14 match !𝑎𝑑𝑣𝑠𝑢 with
15 , nil ↦→ fix𝑥 .𝑥
16 , 𝑎 :: 𝑎𝑠 ↦→
17 letEx 𝑟 = 𝑐ℎ𝑔𝑊𝑡𝑠 {} {} {} {} {} {}
18 !𝑤𝑡𝑠 !𝑎𝑠 !𝑎𝑛𝑠𝑢 !𝑒𝑡𝑎𝑢 in
19 if 𝑎 == 𝑎𝑛𝑠𝑢

20 then 𝐸𝑥 (Λ.𝑤𝑡 ′ :: 𝑟)
21 else 𝐸𝑥 (Λ.𝑤𝑡 ′ ∗ (1 − 𝑒𝑡𝑎′) :: 𝑟)

Fig. 9. Representation of the RWM algorithm of Fig. 1 in p𝜆-amor

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:19

Initialisation:

𝑛 > 0,𝑇 > 0, 𝛾 ∈ (0, 1)
𝑤𝑖 (0) = 𝑒

𝑇𝛾

𝑛 for 𝑖 = 0, . . . , (𝑛 − 1)

For each 𝑡 = 0, . . . ,𝑇 − 1
1. Set for 𝑖 = 1, . . . , 𝑛

𝑝𝑖 (𝑡) = (1 − 𝛾) 𝑤𝑖 (𝑡)∑𝑛−1
𝑗=0 𝑤𝑗 (𝑡)

+ 𝛾

𝑛

2. Sample 𝑖𝑡 randomly from the distribution {𝑖 ↦→ 𝑝𝑖 (𝑡)}𝑛−1𝑖=0
3. Receive reward 𝑥𝑖𝑡 ∈ [0, 1] (Loss 𝐿𝑖𝑡 = 1 − 𝑥𝑖𝑡)
4. For 𝑗 = 0, . . . , (𝑛 − 1):
5. - if 𝑗 = 𝑖𝑡 , then �̂� 𝑗 (𝑡) = 𝐿 𝑗 (𝑡), else �̂� 𝑗 (𝑡) = 0
6. - 𝑤 𝑗 (𝑡 + 1) = 𝑤 𝑗 (𝑡) · 𝑒 (−

𝛾

𝑛
·�̂�𝑗 (𝑡))

Fig. 10. An instance of the EXP3 algorithm in pseudocode reproduced from [Auer et al. 2002]

As in the 𝑅𝑅 example of section 4.1, we use the sub-coupling rule to simplify probability distri-
butions in monadic types to the point distribution eagerly. Our technical appendix shows the full
typing derivation.

4.3 Multi-Armed Bandit
As our last example, we prove an upper bound on the expected loss of a variant of the EXP3
algorithm [Auer et al. 2002] for the multi-armed bandit problem. Multi-armed bandit [Cesa-Bianchi
and Lugosi 2006] is a classic reinforcement learning problem where an agent, historically called the
bandit, has to choose from a set of available decisions, historically called the arms, over a series of
rounds. In each round, each arm has an associated distribution over rewards (rewards range from 0
to 1), but these distributions are not known to the agent. After each round, the agent receives a
single reward value that is sampled from the distribution of the arm it chose. The agent’s goal is to
maximise the expected reward over a fixed number of rounds. The multi-armed bandit problem
exemplifies a fundamental tension between the exploration of new arms and the exploitation of the
arm that has been the most rewarding so far. The tension arises because the distributions associated
with the arms may evolve over rounds in an uncertain way.

Both the experts’ problem that 𝑟𝑤𝑚 solves and the multi-armed bandit problem require decision-
making under uncertainty. However, they differ in the amount of feedback the agent receives. In
the experts’ problem, the agent obtains the advice of all experts and, hence, knows the losses of all
the experts at the end of each round. This is called the full-information setting. In the multi-armed
bandit problem, the agent obtains the reward for only its chosen arm but not the other arms. This
is called the partial-information setting.3
In the rest of this section, we model and analyse a variant of the EXP3 algorithm [Auer et al.

2002], a popular approach for solving the multi-armed bandit problem. The key idea behind the
EXP3 algorithm is to balance the EXPloration and EXPloitation trade-off using an EXPonentially
weighted sampling, as explained next. The algorithm, shown in pseudocode in Fig. 10, is parame-
terised by the number of arms 𝑛, the time horizon or the total number of rounds𝑇 , the learning rate
or the discount factor 𝛾 (a positive real between 0 and 1) and weights for all the arms (positive real
3We prove a bound on the expected loss instead of expected rewards for the multi-armed bandit problem for consistency
with our analysis of 𝑟𝑤𝑚. However, we believe that a similar analysis can be done with rewards as well.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

285:20 Vineet Rajani, Gilles Barthe, and Deepak Garg

numbers initialised to 𝑒
𝑇𝛾

𝑛). In each round 𝑡 , where 𝑡 = 0 . . . (𝑇 − 1), the algorithm begins creates a
probability distribution over the arms. The probability of each arm (line 1) has two summands. The
first summand is a distribution obtained from arm weights as in the RWM example, but discounted
by a factor (1 − 𝛾). The second summand is a uniform distribution over the arms discounted by the
factor 𝛾 . The two summands are the relative probabilities of choosing an arm for exploitation and
exploration, respectively.
Next, the algorithm samples an arm 𝑖𝑡 according to the probability distribution over the arms

(line 2) and receives a reward 𝑥𝑖𝑡 for the chosen arm from an unspecified oracle (line 3). The
corresponding loss, 𝐿𝑖𝑡 ∈ (0, 1), is 𝐿𝑖𝑡 = 1 − 𝑥𝑖𝑡 . On lines 4–6, the algorithm creates a loss vector,
denoted by [�̂� 𝑗 (𝑡)]𝑛−1𝑗=0 , for the arms. The chosen arm 𝑗 = 𝑖𝑡 has loss 𝐿𝑖𝑡 while all other arms are
assumed to have 0 loss. Finally, on line 6, the algorithm updates the weights of the arms using
multiplicative factors that are exponential in the arms’ respective losses. As a result, the weight
of the chosen arm, 𝑖𝑡 , reduces by a factor of 𝑒

−𝛾
𝑛
�̂�𝑖𝑡 , while the weights of all other arms remain

unchanged.
Our goal is to obtain a bound on the total expected loss of the above algorithm and prove that

bound in p𝜆-amor. In particular, we prove the following closed-form bound on the expected loss
(Theorem 9).

Theorem 9. The expected loss of the algorithm in Fig. 10 over 𝑇 rounds is upper-bounded by
(1−𝛾)
𝛾
· 𝑛

2𝑙𝑜𝑔 (𝑛)
(𝑛−𝛾) +

(
(𝑛+𝛾) (1−𝛾)
(𝑛−𝛾) + 1

)
·𝑇 .

As we did for 𝑟𝑤𝑚, we prove this bound by finding a suitable potential function, Ψ(𝑡), and
showing that for any given round 𝑡 ∈ [0,𝑇 − 1], E[𝑙𝑜𝑠𝑠 (𝑡)] ≤ Ψ(𝑡) − Ψ(𝑡 + 1). From the linearity
of expectations, we get that the expectation of total loss over the 𝑇 rounds, say 𝐸, satisfies 𝐸 ≤
Ψ(0) − Ψ(𝑇). We then prove Ψ(𝑇) ≥ 0 and, hence, 𝐸 ≤ Ψ(0). Finally, we show that Ψ(0) equals
the bound in Theorem 9.

The difficult step in this proof is finding a suitable potential function Ψ(𝑡) and proving the bound
E[𝑙𝑜𝑠𝑠 (𝑡)] ≤ Ψ(𝑡) − Ψ(𝑡 + 1). In our technical appendix, we prove that the following potential
function satisfies this property. The proof relies on basic algebraic properties like 1 − 𝑥 ≤ 𝑒−𝑥 ≤
1 − 𝑥 + 1

2𝑥
2 for 𝑥 ≥ 0.

Ψ(𝑡) ≜ 𝑙𝑜𝑔 𝜙 (𝑡)
𝛾

𝑛 (1− 𝛾

𝑛) 1
1−𝛾
+ (𝑇 − 𝑡) ·

(
𝛾 (1−𝛾)
(𝑛−𝛾) + 1

)
where 𝜙 (𝑡) ≜ ∑𝑛−1

𝑖=0 𝑤𝑖 (𝑡)

We note that 𝑤𝑖 (0) = 𝑒
𝑇𝛾

𝑛 from the algorithm’s initialisation step and every weight reduces by
a factor of at most 𝑒

𝛾

𝑛 in each round, so all weights remain ≥ 1 in the first 𝑇 rounds. Hence,
𝑙𝑜𝑔 𝜙 (𝑡) ≥ 0 for 𝑡 ≤ 𝑇 . From this, it is easy to check that Ψ(𝑡) ≥ 0 for 𝑡 ≤ 𝑇 . Finally, when 𝑡 = 0,
𝜙 (𝑡) = 𝑛 · 𝑒

𝑇𝛾

𝑛 . Substituting this in the definition of Ψ(𝑡) above, we easily check that Ψ(0) equals
the bound in Theorem 9.

To prove the bound on expected loss formally, we encode the algorithm in p𝜆-amor as shown in
Fig. 11. We only describe the parts of the encoding that pertain to costs and potentials. The type of
the 𝑏𝑎𝑛𝑑𝑖𝑡 function is parameterised by a reward oracle 𝑟𝑒𝑤𝑎𝑟𝑑 : N→ N→ R+, which provides
the reward for a given round and a given arm. As discussed above, 𝑏𝑎𝑛𝑑𝑖𝑡 requires Ψ(𝑇 − 𝑟) units
of potential as input, where 𝑟 is the number of rounds remaining (in the notation above, 𝑟 would be
𝑇 − 𝑡). Since this potential is no less than the total expected loss over 𝑟 rounds, the monadic output
type of 𝑏𝑎𝑛𝑑𝑖𝑡 has 0 expected cost. Upon terminating, 𝑏𝑎𝑛𝑑𝑖𝑡 returns a distribution over the arms
chosen in each round. As in the 𝑟𝑤𝑚 example, we statically approximate this distribution with a
point distribution using the sub-coupling rule.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:21

1 𝑏𝑎𝑛𝑑𝑖𝑡 : ∀𝑟 : N, 𝑛 : N, 𝛾 : R+, 𝑟𝑒𝑤𝑎𝑟𝑑 : N→ N→ R+ . !N(𝑟) ⊸!N(𝑛) ⊸!R(𝛾)
2 ⊸ ∀𝑤 : N→ R+ . !𝐿𝑖<𝑛 (𝑤 𝑖 ≥ 𝑒

𝑟𝛾

𝑛 & R(𝑤 𝑖))

3 ⊸

[
𝑙𝑜𝑔 (∑𝑖<𝑛 𝑤 𝑖)

𝛾

𝑛
(1− 𝛾

𝑛
) 1
1−𝛾

+ 𝑟 ·
(
𝛾 (1−𝛾)
(𝑛−𝛾) + 1

)]
1

4 ⊸ PC(𝑎←𝛿0) 0 (𝐿𝑖<𝑟N)
5 fix 𝑏𝑎𝑛𝑑𝑖𝑡 .

6 Λ.Λ.Λ.Λ.𝜆 𝑟𝑜𝑢𝑛𝑑 𝑎𝑟𝑚𝑠 𝑔.Λ.𝜆 𝑤𝑡𝑠 𝑝.

7 let! 𝑟𝑜𝑢𝑛𝑑𝑢 = 𝑟𝑜𝑢𝑛𝑑 in let! 𝑎𝑟𝑚𝑠𝑢 = 𝑎𝑟𝑚𝑠 in
8 let! 𝑔𝑢 = 𝑔 in let! 𝑤𝑡𝑠𝑢 = 𝑤𝑡𝑠 in
9 matchN! !𝑟𝑜𝑢𝑛𝑑𝑢
10 ,Z ↦→ return nil
11 , S 𝑟𝑛𝑑 ↦→
12 letEx 𝑝ℎ𝑖 = 𝑠𝑢𝑚 !𝑤𝑡𝑠𝑢 in let! 𝑝ℎ𝑖𝑢 = 𝑝ℎ𝑖 in
13 let! 𝑝𝑟𝑜𝑏𝑢 =𝑚𝑎𝑝 !(𝜆𝑥 .let 𝑦 = 𝑥 in (1 − 𝑔𝑢)/𝑝ℎ𝑖𝑢 ∗ 𝑦 + 𝑔𝑢/𝑎𝑟𝑚𝑠𝑢) !𝑤𝑡𝑠𝑢 in
14 release − = 𝑝 in
15 bind 𝑐𝐴𝑟𝑚 =

16 bind 𝑐ℎ𝐴𝑟𝑚 = toDist !𝑝𝑟𝑜𝑏𝑢 in let! 𝑐ℎ𝐴𝑟𝑚𝑢 = 𝑐ℎ𝐴𝑟𝑚 in
17 bind _ = ↑1−(reward 𝑟 𝑐𝑎) in return (𝐸𝑥 !𝑐ℎ𝐴𝑟𝑚𝑢)
18 in
19 letEx 𝑐𝐴𝑟𝑚′ = 𝑐𝐴𝑟𝑚 in let! 𝑐𝐴𝑟𝑚𝑢 = 𝑐𝐴𝑟𝑚′ in
20 let! 𝑐ℎ𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑔𝑒𝑡𝑅𝑒𝑤𝑎𝑟𝑑 {} {} {} !𝑟𝑜𝑢𝑛𝑑𝑢 !𝑐𝐴𝑟𝑚𝑢 in
21 letEx 𝑙𝑣𝑠 = 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝐿𝑜𝑠𝑠𝑉𝑒𝑐𝑡𝑜𝑟 {} {} {} {} ![1..𝑎𝑟𝑚𝑠𝑢] !𝑝𝑟𝑜𝑏𝑢 !𝑐𝐴𝑟𝑚𝑢 !𝑐ℎ𝑅𝑒𝑤𝑎𝑟𝑑 in
22 letEx 𝑛𝑤 ′ = 𝑐ℎ𝑎𝑛𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠 {} {} {} {} {} !𝑤𝑡𝑠𝑢 𝑙𝑣𝑠 !𝑎𝑟𝑚𝑠𝑢 !𝑔𝑢 in
23 bind 𝑙𝑎𝑡𝑒𝑟 = store () in
24 bind 𝑟𝑒𝑐 = 𝑏𝑎𝑛𝑑𝑖𝑡 {} {} {} {} !𝑟𝑛𝑑 !𝑎𝑟𝑚𝑠𝑢 !𝑔𝑢 {} 𝑛𝑤 𝑙𝑎𝑡𝑒𝑟 in
25 return (𝐸𝑥 𝑐𝐴𝑟𝑚𝑢 :: 𝑟𝑒𝑐)

Fig. 11. Cost analysis of the EXP3 algorithm from Fig. 10 in p𝜆-amor

The body of 𝑏𝑎𝑛𝑑𝑖𝑡 releases the input potential on line 14 and uses it to account for the expected
loss of the current round and for the loss of the recursive call. The expected loss of the current round
is modelled using the ↑ construct on line 17. The functions 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝐿𝑜𝑠𝑠𝑉𝑒𝑐𝑡𝑜𝑟 and 𝑐ℎ𝑎𝑛𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠 ,
whose definitions we defer to our technical appendix, encode the weight update logic from lines
4–6 of the pseudo-code of Fig. 10. Finally, the store construct on line 23 stores Ψ(𝑟 − 1) units of
potential, which is passed to the recursive call on line 24.

5 P𝜆-amorC: An Extension to a Graded ! Modality
So far, we have considered two gradedmodalities, PC(𝑎←𝜇) 𝜅 𝜏 and [𝑝] 𝜏 , and an ungraded comonadic
modality, !𝜏 . Prior proposals such as 𝜆-amor [Rajani et al. 2021], 𝑑ℓPCF [Dal Lago and Gaboardi
2011] and ℓRPCF [Avanzini et al. 2019] have considered graded variants of !𝜏 in the context of cost
analysis of deterministic and probabilistic programs to ! track the number of times a variable is
used, as this increases the expressiveness of the type theory. A natural question is whether p𝜆-amor
can be extended to a graded ! modality. In this section, we answer this question in the affirmative.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

285:22 Vineet Rajani, Gilles Barthe, and Deepak Garg

To the best of our knowledge, graded ! modalities were first introduced in Bounded Linear Logic
(BLL) [Girard et al. 1992]. BLL included the modality !𝑖<𝑛𝜏 , which is morally equivalent to the
iterated tensor 𝜏 [0/𝑖] ⊗ 𝜏 [1/𝑖] . . . ⊗ 𝜏 [(𝑛 − 1)/𝑖] (𝑖 is bound locally in !𝑖<𝑛𝜏). The term 𝑛 is called
the multiplicity or the coffect of the modality [Petricek et al. 2013]. This grading of ! has two
features: (a) It tracks the number of times, 𝑛, that the expression may be used, and (b) Each copy of
the expression can have a different type; the 𝑗𝑡ℎ copy has type 𝜏 [𝑗/𝑖].

In this section, we extend p𝜆-amor to a new type theory p𝜆-amorC by grading the ! modality of
p𝜆-amor in a similar manner. The differences between p𝜆-amor and p𝜆-amorC are limited to the
type system and the model of types.

Due to space restrictions, we only present a brief sketch of p𝜆-amorC here. The full development
is included in our technical appendix, which also covers support for sub-distributions and a type-
preserving embedding of ℓRPCF [Avanzini et al. 2019], which is a previously proposed coeffect-based
system for the analysis of expected execution time. The embedding show that p𝜆-amorC is at least
as expressive as ℓRPCF.

Changes to the Types and Type System. To support graded comonads, we grade the ! modality
of p𝜆-amor with a coeffect generalising that of BLL (as mentioned above). Our graded comonad
is written !Σ𝑎∈𝑆𝑅𝑎

𝜏 (𝑎) and can be thought of as 𝑅𝑎 copies of the type 𝜏 (𝑎) for every 𝑎 ∈ 𝑆 , i.e.,
⊗𝑎∈𝑆 (𝜏 (𝑎))𝑅𝑎 .
In the typing judgment, we annotate every variable in the non-affine context Ω with its multi-

plicity, as in 𝑥 :Σ𝑎∈𝑆𝑅𝑎
𝜏 , where 𝜏 and 𝑅𝑎 may contain 𝑎 free. The juxtaposition of two Ωs, written

Ω1 ⊕ Ω2 is nontrivial now as we have to add multiplicities and take the union of the two 𝑆es. We
defer the formal definition of context juxtaposition to the technical appendix.

Typing Rules. The following typing rules change: the sub-exponential’s introduction and elimi-
nation rules (T-subExpI and T-subExpE), the fixpoint constructor (T-fix), the variable rules of
the non-affine context (T-var2) and the bind rule (T-bind). The revised rules are listed in Fig. 12.

T-subexpI says that if 𝑒 has type 𝜏 for every 𝑎 ∈ 𝑆 using the resources in the non-affine context
Ω (which may depend on 𝑎) and the empty affine context, then for Σ𝑎∈𝑆𝑅𝑎 copies of 𝑒 we will need
Σ𝑎∈𝑆𝑅𝑎 times the resources in Ω. The elimination rule, T-subexpE, says that eliminating a term of
type !Σ𝑎∈𝑆𝑅𝑎

𝜏 introduces a variable binding, 𝑥 :Σ𝑎∈𝑆𝑅𝑎
𝜏 , in the continuation’s context.

T-bind says that if the continuation term 𝑒2 can be typed using resources from Ω′ (𝑎) (for
every 𝑎 in the domain of 𝜇1), then the whole bind term can be type-checked using resources from
Ω ⊕

(∑
𝑎∈𝜋1 (𝜇1) 𝜋2 (𝜇1) (𝑎)

)
· Ω′. Here,

(∑
𝑎∈𝜋1 (𝜇1) 𝜋2 (𝜇1) (𝑎)

)
· Ω′ computes the average (over 𝜇1)

resources required by the continuation.
In the fixpoint rule, T-fix, the parameter 𝑏 denotes a generic node in the recursion tree, 𝑆 is an

index set that ranges over the children of 𝑏, 𝐶𝑎 is the 𝑎𝑡ℎ child of 𝑏, and 𝑁𝑎 is the number of times
the 𝑏𝑡ℎ node uses the value returned by its 𝑎𝑡ℎ child (𝑆 ,𝐶𝑎 and 𝑁𝑎 may depend on 𝑏). The rule is the
same as ℓRPCF’s [Avanzini et al. 2019] fixpoint rule. However, in ℓRPCF, this rule is only proved
sound with respect to a fixed cost model (one unit of cost for every elimination construct) and,
hence, can only be used to bound the expected running time of programs. In p𝜆-amorC we are not
restricted to a fixed cost model, and allow the programmer to specify the cost model using the tick
construct. ℓRPCF’s reasoning principle for fixpoints carries over to our more general setting.
Finally, T-var2 says that the 𝐽 𝑡ℎ variant of a non-affine variable can be used only when 𝐽 is in

the index set of instances (indicated by 𝐽 ∈ 𝑆) and 𝑅𝐽 ≥ 1.

Interaction between the Graded ! and the Potential Modalities. We describe the interaction between
the graded ! modality and the potential modality using two distributive laws [Gaboardi et al. 2016],

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:23

Θ,Δ |= 𝑅𝐽 ≥ 1 Θ,Δ |= 𝐽 ∈ 𝑆
Ψ;Θ;Δ;Ω, 𝑥 :∑

𝑎∈𝑆 𝑅𝑎
𝜏 ; . ⊢ 𝑥 : 𝜏 [𝐽/𝑎]

T-var2

Ψ;Θ, 𝑎;Δ, 𝑎 ∈ 𝑆 ;Ω; . ⊢ 𝑒 : 𝜏 Θ, 𝑎;Δ, 𝑎 ∈ 𝑆 ⊢ 𝑅𝑎 : R+

Ψ;Θ;Δ;
∑︁
𝑎∈𝑆

𝑅𝑎 · Ω; . ⊢ !𝑒 : !∑𝑎∈𝑆 𝑅𝑎
𝜏

T-subExpI

Ψ;Θ;Δ;Ω1; Γ1 ⊢ 𝑒 : !∑𝑎∈𝑆 𝑅𝑎
𝜏 Ψ;Θ;Δ;Ω2, 𝑥 :∑

𝑎∈𝑆 𝑅𝑎
𝜏 ; Γ2 ⊢ 𝑒′ : 𝜏 ′

Ψ;Θ;Δ;Ω1 ⊕ Ω2; Γ1 ⊕ Γ2 ⊢ let !𝑥 = 𝑒 in 𝑒′ : 𝜏 ′
T-subExpE

Ψ;Θ, 𝑏;Δ;𝑥 :∑
𝑎∈𝑆 𝑁𝑎

𝜏 [𝐶𝑎/𝑏]; . ⊢ 𝑒 : 𝜏
Ψ;Θ;Δ;Ω; Γ ⊢ fix 𝑥 .𝑒 : 𝜏 [𝐽/𝑏]

T-fix

Ψ;Θ;Δ;Ω; Γ1 ⊢ 𝑒1 : PC(𝑎←𝜇1) 𝜅1 𝜏1

Ψ;Θ, 𝑎;Δ;Ω′; Γ2, 𝑥 : 𝜏1 ⊢ 𝑒2 : PC(𝑏←𝜇2) 𝜅2 𝜏2 𝜅 ≥ 𝜅1 +
∑︁

𝑎∈ (𝜋1 (𝜇1))
(𝜋2 (𝜇1) (𝑎)) · 𝜅2 (𝑎)

𝜇 = 𝜇1 ⊗ 𝑎.𝜇2 Ψ;Θ, 𝑐;Δ, 𝑐 ∈ 𝜋1 (𝜇) ⊢ 𝜏2 [𝜋1 (𝑐)/𝑎] [𝜋2 (𝑐)/𝑏] <: 𝜏

Ψ;Θ;Δ;Ω ⊕ ©«
∑︁

𝑎∈𝜋1 (𝜇1)
𝜋2 (𝜇1) (𝑎)ª®¬ · Ω′; Γ1 ⊕ Γ2 ⊢ bind 𝑥 = 𝑒1 in 𝑒2 : PC(𝑐←𝜇) 𝜅 𝜏

T-bind

Ψ;Θ, 𝑎;Δ, 𝑎 ∈ 𝐼 ⊢ 𝜏 <: 𝜏 ′

Ψ;Θ;Δ ⊢
[∑︁
𝑎∈𝐼

𝑅𝑎 · 𝑃𝑎

]
!∑

𝑎∈𝐼 𝑅𝑎
𝜏 <: !∑

𝑎∈𝐼 𝑅𝑎
[𝑃𝑎] 𝜏 ′

sub-BP1

Ψ;Θ, 𝑎;Δ, 𝑎 ∈ 𝐼 ⊢ 𝜏 <: 𝜏 ′

Ψ;Θ;Δ ⊢!∑
𝑎∈𝐼 𝑅𝑎

[𝑃𝑎] 𝜏 <:

[∑︁
𝑎∈𝐼

𝑅𝑎 · 𝑃𝑎

]
!∑

𝑎∈𝐼 𝑅𝑎
𝜏 ′

sub-BP2

Fig. 12. Selected typing and subtyping rules of p𝜆-amorC

which are formalised as the subtyping rules sub-BP1 and sub-BP2 (Fig. 12). Rule sub-BP1 pushes
potential inside a nested graded !modality, thus reversing the order of the modalities. Rule sub-BP2
does the converse. These type coercions are admissible in our semantic model because potentials
are ghost resources. The soundness of the two subtyping rules is proved as a part of the proof of
the fundamental theorem in the technical appendix.

Model and Soundness. The model of types changes in the interpretation of ! and the interpretation
of the non-affine context to account for grading as shown in Fig. 13. The interpretation of !∑

𝑎∈𝑆 𝐶𝑎
𝜏

contains the triple (𝑝,𝑇 , !𝑒) if the potential 𝑝 is sufficient to interpret the 𝐶𝑎 copies of the 𝑎𝑡ℎ
instance of 𝑒 for each 𝑎 ∈ 𝑆 . A similar change is made to the interpretation of the non-affine context
GJΩK, which also has multiplicity indices.
We re-prove the fundamental theorem (Theorem 7) for this extended model. The statement of

the fundamental theorem does not change, but its proof changes wherever grades appear.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

285:24 Vineet Rajani, Gilles Barthe, and Deepak Garg

VJ!∑
𝑎∈𝑆 𝐶𝑎

𝜏K ≜ {(𝑝,𝑇 , !𝑒) | ∃𝑝0, . . . , 𝑝 |𝑆 |−1.
(∑

𝑖< |𝑆 | 𝑝𝑖 ·𝐶𝑎 [𝑆 (𝑖)/𝑎]
)
≤ 𝑝 ∧

∀𝑖 < |𝑆 |.(𝑝𝑖 ,𝑇 , 𝑒) ∈ EJ𝜏 [𝑆 (𝑖)/𝑎]K}
GJΩK ≜ {(𝑝,𝑇 , 𝜌𝑚) | ∃𝑓 : V𝑎𝑟𝑠 → N→ R+.

(∀(𝑥 :∑
𝑎∈𝑆 𝐶𝑎

𝜏) ∈ Ω.∀𝑖 < |𝑆 |.(𝑓 𝑥 𝑖,𝑇 , 𝜌𝑚 (𝑥)) ∈ EJ𝜏 [𝑆 (𝑖)/𝑎]K) ∧
(∑𝑥 :∑

𝑎∈𝑆 𝐶𝑎𝜏∈Ω
∑

𝑖< |𝑆 | 𝐶𝑎 [𝑆 (𝑖)/𝑎] · 𝑓 𝑥 𝑖) ≤ 𝑝}

Fig. 13. Revised clauses of the p𝜆-amorC model

6 Related Work
We discuss closely related prior work and compare it to p𝜆-amor. We believe that, in the context of
higher-order probabilistic programming, p𝜆-amor is the first type theory that simultaneously offers
value-dependent potentials, static approximations of distributions in types, and soundness against
a model of types (up to couplings, which is crucial for the simplification of static distributions that
appear in our examples).

Much work on the cost analysis of a probabilistic programs is in a non higher-order setting. For
example, there is work on probabilistic abstract reduction systems [Avanzini et al. 2020a] and on
imperative probabilistic programs using ranking super-martingales [Avanzini et al. 2020a; Chakarov
and Sankaranarayanan 2013; Chatterjee et al. 2017]. There is also work based on pre-expectation
calculi and program logics [Avanzini et al. 2020b; Batz et al. 2023; Kaminski et al. 2016; Ngo et al.
2018; Wang et al. 2021]. p𝜆-amor is structurally very different from all of these lines of work, as
p𝜆-amor is a type theory for higher-order functional programs.

Work on the cost analysis of higher-order probabilistic programs is fairly limited. We discuss three
different approaches: type-and-effect systems [Wang et al. 2020], coeffect-based systems [Avanzini
et al. 2019] and program transformation-based systems [Avanzini et al. 2021]. pRAML [Wang et al.
2020] is a type-and-effect system for expected cost analysis. It models cost as an effect, which is
subtly different but similar to p𝜆-amor’s monadic model of costs. pRAML uses potentials to reason
about amortised cost. The key difference between pRAML and p𝜆-amor is in the expressiveness:
pRAML cannot handle value-dependent potentials, which are essential for our examples. Also,
unlike p𝜆-amor, pRAML lacks type-level reasoning about probabilities (probabilities only appear
in terms). However, pRAML has been implemented, whereas p𝜆-amor has no implementation yet.
ℓRPCF [Avanzini et al. 2019] is a coeffect-based type theory for the cost analysis of higher-

order probabilistic programs. Its design is based on similar approaches for the cost analysis of
deterministic programs [Dal Lago and Gaboardi 2011; Dal Lago and Petit 2012]. The cost model
of ℓRPCF is fixed: a unit cost is incurred at every elimination step (𝛽-reduction, unrolling of the
fixpoint, and generating a uniform distribution). Hence, ℓRPCF is limited to the analysis of expected
running times of programs. In contrast, the cost model of p𝜆-amor is not fixed and can be specified
flexibly by the programmer using the ↑𝜅 construct. This allows us to model non-standard costs like
the loss or regret of an online learning algorithm.

There are also deeper technical differences between ℓRPCF and p𝜆-amor. ℓRPCF grades the typing
derivation, not the types, with the expected cost. As a result, types lack cost information and typing
derivations must be analysed to obtain cost information. In contrast, p𝜆-amor relies on a monadic
type, PC, to track expected costs, so costs are internalised into types. Next, p𝜆-amor uses the same
type construct (the aforementioned monad) to track probability distributions. In contrast, ℓRPCF
tracks distributions using a dedicated type construct called Dynamic Distribution Types (DDTs).
So, stylistically, ℓRPCF separates the tracking of cost (in the typing derivations) from the tracking
of distributions (in DDTs), while p𝜆-amor conflates the two into the same monadic construct. Next,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

A Modal Type Theory of Expected Cost in Higher-Order Probabilistic Programs 285:25

ℓRPCF assumes that the static distribution in an expression’s type and the corresponding runtime
distribution of the expression have the same carrier set. p𝜆-amor relaxes this assumption and
instead relates the two distributions up to a coupling, which provides more flexibility in typing
programs (but a weaker semantic guarantee). Finally, p𝜆-amor includes a logical relations model of
types, and this model is used to prove the type theory sound. ℓRPCF lacks a model of types and its
metatheory is based on a direct analysis of the operational semantics of the language.

Avanzini et al. [2021] present a program transformation-based approach for expected cost analy-
sis of functional programs with probabilistic choice. Their transform is a continuation passing style
(CPS) transformation of the given probabilistic program using an expected cost transformer [Kamin-
ski et al. 2016]. The transformed program is not probabilistic and encodes the expected cost directly
as a program term, which can be analysed using standard program verification techniques. This
is very different from the approach of p𝜆-amor and the work described above where costs are
modelled directly with effects or monads.

7 Conclusion
We have presented p𝜆-amor, a graded modal type-theory for proving bounds on the expected
cost of higher-order probabilistic programs with recursion. p𝜆-amor uses graded modal types to
encode potentials, costs and probability distributions at the type level. The type theory is proved
sound relative to a Kripke step-indexed model that uses potentials and probabilistic couplings to
give semantics to p𝜆-amor types. We have used p𝜆-amor to analyse the expected loss of several
examples from the online learning theory literature. Finally, we also presented an extension of
p𝜆-amor, called p𝜆-amorC, with graded exponential modalities, which enable precise tracking of
variable uses.

Acknowledgments
The authors would like to thank the paper’s anonymous reviewers for their comments and feedback.
Vineet Rajani was supported in part by the EPSRC grant EP/Y003535/1.

Data-Access Statement
The full technical development with the proofs of all our theorems, the typing derivations of all our
examples, the details of the extension of p𝜆-amor with graded exponentials and sub-distributions,
and the type-preserving embedding of ℓRPCF in that extension can be found in a technical appendix
available on Zenodo [Rajani et al. 2024].

References
Alejandro Aguirre and Lars Birkedal. 2023. Step-Indexed Logical Relations for Countable Nondeterminism and Probabilistic

Choice. Proc. ACM Program. Lang. 7, POPL (2023), 33–60.
Amal Jamil Ahmed. 2004. Semantics of types for mutable state. Ph. D. Dissertation. Princeton University.
Sanjeev Arora. 2013. Lectures on Advanced AlgorithmDesign. https://www.cs.princeton.edu/courses/archive/fall13/cos521/.
Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The Multiplicative Weights Update Method: a Meta-Algorithm and

Applications. Theory of Computing 8, 6 (2012).
Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. 2002. The Nonstochastic Multiarmed Bandit Problem.

SIAM J. Comput. 32, 1 (2002).
Martin Avanzini, Gilles Barthe, and Ugo Dal Lago. 2021. On continuation-passing transformations and expected cost

analysis. Proc. ACM Program. Lang. 5, ICFP (2021), 1–30.
Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen. 2019. Type-Based Complexity Analysis of Probabilistic Functional

Programs. In Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. 2020a. On probabilistic term rewriting. Sci. Comput. Program. 185

(2020).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

https://www.cs.princeton.edu/courses/archive/fall13/cos521/

285:26 Vineet Rajani, Gilles Barthe, and Deepak Garg

Martin Avanzini, Georg Moser, and Michael Schaper. 2020b. A modular cost analysis for probabilistic programs. Proc. ACM
Program. Lang. 4, OOPSLA (2020), 172:1–172:30.

Nikhil Bansal and Anupam Gupta. 2019. Potential-Function Proofs for Gradient Methods. Theory Comput. 15 (2019).
Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Lena Verscht. 2023. A Calculus for

Amortized Expected Runtimes. Proc. ACM Program. Lang. 7, POPL (2023), 1–28.
Olivier Bournez and Florent Garnier. 2005. Proving Positive Almost-Sure Termination. In Term Rewriting and Applications.

Springer Berlin Heidelberg, 323–337.
Nicolo Cesa-Bianchi and Gabor Lugosi. 2006. Prediction, Learning, and Games. Cambridge university press.
Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis using Martingales. In Computer-

Aided Verification (CAV), Vol. 8044. 511–526.
Krishnendu Chatterjee, Hongfei Fu, and Aniket Murhekar. 2017. Automated Recurrence Analysis for Almost-Linear

Expected-Runtime Bounds. In International Conference on Computer Aided Verification (CAV), Vol. 10426. Springer,
118–139.

Ugo Dal Lago and Marco Gaboardi. 2011. Linear Dependent Types and Relative Completeness. Logical Methods in Computer
Science 8, 4 (2011).

Ugo Dal Lago and Barbara Petit. 2012. Linear Dependent Types in a Call-by-value Scenario. Science of Computer Programming
84 (2012).

Nils Anders Danielsson. 2008. Lightweight Semiformal Time Complexity Analysis for Purely Functional Data Structures. In
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart, and Tarmo Uustalu. 2016. Combining Effects and
Coeffects via Grading. In Proceedings of the ACM SIGPLAN International Conference on Functional Programming (ICFP).

Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. 1992. Bounded linear logic: a modular approach to polynomial-time
computability. Theoretical Computer Science 97, 1 (1992).

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition
Reasoning for Expected Run-Times of Probabilistic Programs. In Proceedings of the European Symposium on Programming,
(ESOP), Vol. 9632. Springer, 364–389.

Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer New York,
NY.

John C Mitchell. 1996. Foundations for programming languages. Vol. 1. MIT press Cambridge.
Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded Expectations: Resource Analysis for Probabilistic

Programs. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
Chris Okasaki. 1996. Purely Functional Data Structures. Ph. D. Dissertation. Carnegie Mellon University.
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative program reasoning with graded modal

types. Proceedings of the ACM on Programming Languages 3, ICFP (2019), 1–30.
Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. 2013. Coeffects: Unified Static Analysis of Context-Dependence. In

Automata, Languages, and Programming - International Colloquium.
Vineet Rajani, Gilles Barthe, and Deepak Garg. 2024. A modal type-theory of expected cost in higher-order probabilistic

programs (Technical appendix). https://doi.org/10.5281/zenodo.13450390
Vineet Rajani, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2021. A unifying type-theory for higher-order (amortized)

cost analysis. Proc. ACM Program. Lang. 5, POPL (2021), 1–28.
Herbert Robbins and Sutton Monro. 1951. A Stochastic Approximation Method. The Annals of Mathematical Statistics 22, 3

(1951), 400 – 407.
Robert E. Tarjan. 1985. Amortized computational complexity. SIAM J. Algebraic Discrete Methods 6, 2 (1985).
Cedric Villani. 2008. Optimal transport: Old and New. Springer Berlin, Heidelberg.
Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual equivalence for a

probabilistic language with continuous random variables and recursion. Proc. ACM Program. Lang. 2, ICFP (2018),
87:1–87:30.

DiWang, Jan Hoffmann, and ThomasW. Reps. 2021. Central moment analysis for cost accumulators in probabilistic programs.
In Proceedings of the ACM SIGPLAN International Conference on Programming Language Design and Implementation
(PLDI). 559–573.

Di Wang, David M. Kahn, and Jan Hoffmann. 2020. Raising expectations: automating expected cost analysis with types.
Proc. ACM Program. Lang. 4, ICFP (2020).

Received 2024-04-05; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 285. Publication date: October 2024.

https://doi.org/10.5281/zenodo.13450390

	Abstract
	1 Introduction
	2 Background
	2.1 Online Machine Learning with an Illustrative Example
	2.2 -amor
	2.3 Probability Theory Preliminaries

	3 P-amor
	3.1 Statics
	3.2 Type System
	3.3 Dynamics
	3.4 Relation between the Modalities and Soundness
	3.5 Model of Types

	4 Examples
	4.1 Randomised Response
	4.2 Randomised Weighted Majority from Section 2.1, Revisited
	4.3 Multi-Armed Bandit

	5 P-amorC: An Extension to a Graded ! Modality
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

