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1 Introduction
Programs routinely process secret information. Informa-
tion Flow Control (IFC) prevents leaks of such secrets,
and entails tracking data and control dependencies. The
weak memory semantics provided by concurrent languages
like C and C++ allows apparent syntactic dependencies to
be ignored in order to permit compiler optimisations [2].
Previous work defines a calculation of dependencies that
must remain after optimisation [12]. It is only these
so-called semantic dependencies that security properties
may rely on. Additionally, a program secure under one
weak memory semantics may be insecure in another [11].
Prior work develops IFC for processors [18, 15] without
a dependency-removing optimiser, and for a concurrent
language [16] that excludes weak memory behaviour.

In this work, we present an approach to IFC for com-
piler optimised code under a varied choice of weak memory
semantics, e.g. sequential consistency, release acquire, or
C++. The key idea is to use semantic dependencies to ab-
stract away the details of the compiler’s transformations
and to build a general framework for dependency track-
ing that is sound with this reduced set of dependencies.
This is ongoing work and we are currently in the process
of formalising our approach.

We describe the key ideas using the example below.
r1, r2, and r3 are thread local variables. L1 and L2 are
low security memory locations. H is a high security mem-
ory location. Line 1 is the parent thread, lines 2-9 are the
first thread and lines 10-12 are the second.

1 L1 := 0; L2 := 0; H := secret;

2 r1 := L1;

3 if (r1 = 1) {
4 L2 := 2;

5 L2 := 1;

6 r2 := H;

7 L1 := r2;

8 } else

9 L2 := 1;

10 r3 := L2;

11 if (r3 = 1)

12 L1 := 1;

On a weak memory system that forbids optimisations by
respecting syntactic dependencies, outcomes where the
value at H is leaked are forbidden. In the following, we
show that after optimisation this guarantee can be lost.

2 Approach
Our approach uses two pieces of machinery.

A symbolic denotational semantics for weak mem-
ory concurrency informs us of valid orderings of atomic ac-
cesses with respect to both compiler and hardware optimi-
sations. Its output is a set of justifications (appendix A.3),

where each justification captures the dependencies of a
write. These are computed inductively over an input pro-
gram. Formally a justification has the following shape:

(P,D) ⊢ψ (l : W x ϵ)

The write being justified is (l : W x ϵ), where l is a
unique label, x is the memory location being written, and
ϵ is the value written. P is a predicate capturing control
dependencies, D is a set of read data dependencies, and
ψ is a restriction on how the program can execute.

The first step of the semantics generates initial justi-
fications from the syntax of the program, e.g. the justifi-
cation of write 7 records the condition of line 3 in P , and
the data dependence on the read of line 6 in D:

(⊤, ∅) ⊢⊤ (1a : W L1 0) (⊤, ∅) ⊢⊤ (1b : W L2 0)

(⊤, ∅) ⊢⊤ (1c : W H secret)

(r1 = 1, ∅) ⊢⊤ (4 : W L2 2) (r1 = 1, ∅) ⊢⊤ (5 : W L2 1)

(r1 = 1, {6}) ⊢⊤ (7 : W L1 r2)

(r1 ̸= 1, ∅) ⊢⊤ (9 : W L2 1)

(⊤, ∅) ⊢⊤ (12 : W L1 1)

The set of justifications is elaborated, e.g. by removing
shadowed writes or by lifting writes from branches where
the writes happen regardless. For writes at lines 5 and 9,
we elide the write at line 4 as it is shadowed by the write
on 5, adding (a) and (b) with ψ recording the elision of
4 from reads from, a relation linking writes to reads that
take their value. Now each branch has an equivalent write
of 1 to L2, so we lift the writes’ dependency on the branch,
adding justifications (c) and (d).

(a) (r1 = 1, ∅) ⊢4/∈π1(rf) (5 : W L2 1)

(b) (r1 ̸= 1, ∅) ⊢4/∈π1(rf) (9 : W L2 1)

(c) (⊤, ∅) ⊢4/∈π1(rf) (5 : W L2 1) (d) (⊤, ∅) ⊢4/∈π1(rf) (9 : W L2 1)

A non-deterministic operational semantics uses
the order imposed by justifications to walk the program,
ensuring that low writes are independent of high reads. It
maintains a state comprising a set of executed events, E,
a set of timestamped committed writes to low locations,
S, the branch conditions chosen, R, and a predicate re-
stricting the shape of the execution, J (derived from ψ
in each justification used in the walk). Subscripts project
from a state tuple: XE , XS , XR, XJ . Following justifica-
tions contrasts with classical taint analysis where security
labels track dependencies syntactically [4, 5, 13].

Def. 2.1. (State equivalence). Two end states, X and
X ′, of the operational semantics are equivalent, written
X ≈ X ′, if their low branch conditions are consistent,
XR ∧ X ′

R, if they have equivalent observable behaviour,
XS ∼ X ′

S, and if the assumptions made about low sym-
bols in resolving justifications are consistent, XJ ∧X ′

J .



We must check all possible high inputs to ensure that
no permutation of values leaks secrets. To this end we
provide an expression, ϵ, that restricts the values of high
symbols i.e. h1 = 0 ∧ h2 = 0, h1 = 0 ∧ h2 = 1.

Connecting the denotational and operational seman-
tics is a futures function (def. B.1.1), FP , which is instan-
tiated from a program, P. It returns the set of imme-
diately executable instructions as well as the constraints
that executing said instruction impose on the shape of the
execution.

Def. 2.2. (Security judgement). For a program, P, and
a resulting futures function, FP . For every final state of
the operational semantics under restriction ϵ, there is an
equivalent end state for restriction ϵ′:

∀ϵ, ϵ′. (∅, ∅,⊤, ϵ)
fin−−→ X =⇒ ∃X′. (∅, ∅,⊤, ϵ′)

fin−−→ X′ ∧X ≈ X′

Returning to the example. We must first execute the ini-
tialising writes 1a, 1b, and 1c. After this, there is a choice
of using justification (c) or (d) to perform the writes at 5
or 9. The read at 2 is unconstrained so that can be chosen
also. The futures after executing line 1 are:

(5 : W L2 1), 4 /∈ π1(rf)) ((9 : W L2 1), 4 /∈ π1(rf))

((2 : R L1 r1),⊤)

If we execute the write at 5, we can now construct an
execution where we read 1 into r1 thus allowing the in-
formation leak. States X and X ′ are reachable in the
operational semantics, violating Def. 2.2:

(1, (L1, 41), r1 = 1) ∈ XS (1, (L1, 42), r1 = 1) ∈ X′
S XS ̸∼ X′

S

Below is a weak memory execution of this program: rf
connects writes to reads that read that value, and dp –
derived from justification – connects reads to writes which
are dependent on them. Event 4 is elided and event 9 is
on the untaken branch.

The above execution is valid under the C++11,
POWER, and ARMmemory models. However it is forbid-
den under sequential consistency, as reordering the write
at 4 prior to the read at 2 is disallowed. We introduce
an extended futures function (def. B.1.2), FP

M , that filters
the allowed futures based upon whether they would con-
stitute a valid ordering under the memory model, M ; this
function replaces all prior uses within the operational se-
mantics and we also restrict the final state according to
M (appendix B.3).

The approach presented here identified a failure of IFC
in our example caused by the interaction of weak memory
concurrency and compiler optimisations. We are working
towards verifying that an algorithm is secure within this
environment: if an algorithm does not violate our security
judgement then we assert that there is non-interference.

Compositionality is an important part of any concur-
rent semantics. Justification is calculated per-thread in
our denotational semantics, so our security judgement,
driven by justification, need only be considered on a per-
thread basis until executions are projected.

3 Related Work
Relaxed memory. The C/C++ memory model per-
mits dubious thin-air behaviours [3], and reasoning under
a memory model that permits these behaviours is impos-
sible [2]. Work has been done to produce memory models
that do not exhibit these behaviours [12, 9, 10, 8], but
they fail by restricting the allowed executions too much,
invalidating compiler optimisations.

MRD [12] is a thin-air free memory model that allows
a wide variety of common compiler optimisations, this is
the base from which the dependency component of our
semantics is built upon. All current thin-air free memory
models fail to accommodate some compiler optimisations,
and none has been taken up by the C++ specification, so
there is no settled decision on which optimisations should
be allowed. Our approach separates the concerns of the
memory orderings from the security guarantees so that
these components can be separately proved and updated,
having an exportable justification allows for this.

Promising [9] is a thin-air free memory model that
uses an operational semantics to walk traces of the pro-
gram reasoning about valid orderings along the way with
promises. However it suffers in that it is undecidable [1],
and that it violates the C/C++ coherence rules [6].

Information flow security. An optimising compiler is
unaware of the security requirements of the underlying
source code, and therefore it does not attempt to preserve
them, this is known as the correctness-security gap [7];
this paper worked through several examples of cases where
security guarantees are invalidated by optimisations and
also posed many questions around what should be done
in regards to addressing this gap. It should be mentioned
that the breakdown of guarantees is further exacerbated
under a concurrent environment – as the as-if rule is a
thread local guarantee that is not necessarily maintained
in such an environment. Of the questions posed we hope
to tackle Generalised compiler correctness proofs, Testing
tools, and Correctness-Security Violation Detectors with
respect to a weak memory environment.

A separation logic has been created for the Promis-
ing semantics [17], it has similar guarantees to that of
RSL [19] with novel features for reasoning about thin-air
freedom and coherence. But the promising model does
not accommodate all needed optimisations.

Smith et al. [14, 15] created a program logic for value-
dependent information flow control under weak orderings
of any multi-copy-atomic memory model; they instantiate
it with ARM and POWER models. It takes into account
hardware optimisations and reorderings allowed by inter-
instruction dependencies. They provide a tool to auto-
mate the application of this logic to a program.
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A Dependency calculation

A.1 Language

A type, t ∈ T , is defined as a set of values, V(t), and a set of operators.

V =
⋃

∀t ∈ T . V(t)

Expressions, E , are either: a symbolic value, s ∈ S, a concrete value, v ∈ V, or expressions composed with an operator.

E = s | E binaryoperator E | unaryoperator E | v

For an instance of an expression, ϵ, symbols(ϵ) is the minimal subset of S required to construct ϵ, ϵ|S is the minimal
evaluatable expression that only contains symbols in S.

An event is one of:

• A write, W x ϵ, where x is the location being written to, and ϵ is the expression written.

• A read, R x s, where x is the location being written to, and s is the symbol introduced by performing this read.

• A memory fence, Fo, where o is the ordering that is imposed by the fence e.g. SC, REL, ACQ.

• A branch, [ϵ], where ϵ is the expression which we branch upon.

loc(e) = x. e ∈ {W x ϵ, R x s} val(e) = ϵ. e ∈ {W x ϵ, R x ϵ, [ϵ]}

O(s) = e. e ∈ R ∧ val(e) = s O(ϵ) =
⋃

s∈symbols(ϵ)

O(s)

A program is made up of a set of labelled events, E. A labelled event, (l : e), extends an event with a unique label, l ∈ L.

label(e) = l. (l : e)

Several maximal subsets are defined on this set: W, the set of all writes, R, the set of all reads, F , the set of all fences,
B, the set of all branches. Each of these sets can be restricted to high, H, and low, L, locations:

(e ∈ E ∧ loc(e) ∈ L) =⇒ e ∈ EL (e ∈ E ∧ loc(e) ∈ H) =⇒ e ∈ EH

P(l) is the syntactic control dependencies for a labelled event (l : e).

A.2 Event structure

A program written in our language is consumed in a continuation passing style to create an event structure, from this
justifications are calculated.

A.3 Justification

For every write present in an event structure we create a justification. Initial justifications are generated using purely
syntactic constraints. From here we apply a sequence of operations that determine which of these are not true dependencies
and we project out justifications which no longer have these constraints applied, the details of these operations are part
of concurrent work.

Def. A.3.1. (Justification).

(P,D) ⊢(ψ, ≤, E) w

D ∈ P(L)
w ∈ EW

A justification contains:

• Control dependencies, P , a predicate over the symbol environment that must be met for the write to happen.

• Data dependencies, D, a set of the symbol values that are present in the written value, along with any that are
introduced as part of the dependency calculation.
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• Execution restrictions, ψ, a predicate restricting the executions that this justification is valid in – an important
distinction between this and P is that ψ does not introduce any ordering constraints on when the write can execute.

• Preserved program order, ≤, a subset of the syntactic program order that is guaranteed to be preserved. This contains
edges between accesses to the same locations as well as those introduced by pointer aliasing and synchronisation
instructions.

• Program, E, optimisations that make write values concrete, promote events to their synchronised equivalent or
otherwise transform individual events have a different understanding of the program, E holds this information. The
need for this becomes apparent when you consider optimisations that are performed based on guarantees not present
in the source such as: undefined behaviour or alignment.

• A write, (l : W x ϵ), which is being justified.

B Security

B.1 Futures

The futures function, FP , takes the current state of the execution and computes the events that can be executed next. It
operates on the justification set, FP , obtained from consuming program P.

Def. B.1.1. (Futures).

FP(E,R, J) =
⋃

(P,D)⊢(ψ,≤,E)w ∈ FP

{ (e, ψ) | consistent(e) ∧


(R =⇒ P ) ∧D ⊆ E e = w

O(val(e)) ⊆ E e ∈ EB

⊤ e ∈ (ER ∪ EF )

}

consistent(e) = (J ∧ ψ)[rf ] ∧ label(e) /∈ E ∧ ppoConsistent(e) rf = (E ∪ {l})× (E ∪ {l})
ppoConsistent(e) = ∄ l′. l′ ≤ label(e) ∧ l′ /∈ E

Def. B.1.2. (Extended Futures). The extended futures function, FP
M , filters the futures returned by the futures function

depending upon whether a memory model, M , allows this within its ordering constraints.

FP
M (E,R, J) = {f | f ∈ FP(E,R, J) ∧M(E ∪ {π1(f)}, R, J)}

B.2 Operational Semantics

The initial state for our operational semantics is:

(E,S,R, J) = (∅, ∅,⊤,⊤)

With E containing the executed event labels, S containing our committed stores to low locations, R containing the choices
made when branching, and J containing the combined restrictions over the execution taken from justifications. We can
freely strengthen our execution restriction. Our operational semantics transition is:

(L × S× E × E) fin−−→ (S× E × E) S = N× (loc, E)× E

Def. B.2.1. (Committed store isomorphism). Two sets of committed writes, A and B, are isomorphic iff for every

ordering of equivalent writes in one, there exists an equivalent ordering in the other. The function (
Λ−→) maps symbols

introduced in one branch to equivalent symbols in another branch, it is required in order to compare symbols introduced in
one branch with those introduced in another, the definition is omitted.

A ∼ B = B ∼ A ∧ ∀ (t, (x, ϵa), Ra) ∈ A. ∃ (t, (x, ϵb), Rb) ∈ B. (Ra ∧Rb =⇒ ϵa = (
Λ−→)ϵb)
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FINISH
FP(E,R, J) = ∅ ∧ J

(E,S,R, J)
fin−−→ (E,S,R|L, J |L)

FENCE
((l : Fo), ψ) ∈ FP(E,R, J)

(E,S,R, J) −→ (E ∪ {l}, S,R, J ∧ ψ)
LOAD

((l : e), ψ) ∈ FP(E,R, J) ∧ e ∈ R
(E,S,R, J) −→ (E ∪ {l}, S,R, J ∧ ψ)

HSTORE
((l : W x ϵ), ψ) ∈ FP(E,R, J) x ∈ H
(E,S,R, J) −→ (E ∪ {l}, S,R, J ∧ ψ)

LSTORE

((l : W x ϵ), ψ) ∈ FP(E,R, J) x ∈ L
∀t′ ∈ π1(S). t > t′ S′ = {(t, (x, ϵ), R)}
(E,S,R, J) −→ (E ∪ {l}, S ∪ S′, R, J ∧ ψ)

BRANCH-T
((l : [ϵ]), ψ) ∈ FP(E,R, J)

(E,S,R, J) −→ (E ∪ {l}, S,R ∧ ϵ, J ∧ ψ)
BRANCH-F

((l : [ϵ]), ψ) ∈ FP(E,R, J)

(E,S,R, J) −→ (E ∪ {l}, S,R ∧ ¬ϵ, J ∧ ψ)

B.3 Extended operational semantics

In our extended operational semantics all uses of our futures function, FP , are replaced with our extended futures function,
FP
M , and we introduce a new precondition to the FINISH rule.

FINISHM

FP
M (E,R, J) = ∅ ∧ J ∧M(E,R, J)

(E,S,R, J)
fin−−→ (E,S,R|L, J |L)
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